首页> 美国卫生研究院文献>other >Characterization of Folding Mechanisms of Trp-cage and WW-domain by Network Analysis of Simulations with a Hybrid-resolution Model
【2h】

Characterization of Folding Mechanisms of Trp-cage and WW-domain by Network Analysis of Simulations with a Hybrid-resolution Model

机译:基于混合分辨率模型的网络分析表征Trp笼和WW域的折叠机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we apply a hybrid-resolution model, namely PACE, to characterize the free energy surfaces (FESs) of trp-cage and a WW domain variant along with the respective folding mechanisms. Unbiased, independent simulations with PACE are found to achieve together multiple folding and unfolding events for both proteins, allowing us to perform network analysis of the FESs to identify folding pathways. PACE reproduces for both proteins expected complexity hidden in the folding FESs, in particular, meta-stable non-native intermediates. Pathway analysis shows that some of these intermediates are, actually, on-pathway folding intermediates and that intermediates kinetically closest to the native states can be either critical on-pathway or off-pathway intermediates, depending on the protein. Apart from general insights into folding, specific folding mechanisms of the proteins are resolved. We find that trp-cage folds via a dominant pathway in which hydrophobic collapse occurs before the N-terminal helix forms; full incorporation of Trp6 into the hydrophobic core takes place as the last step of folding, which, however, may not be the rate-limiting step. For the WW domain variant studied we observe two main folding pathways with opposite orders of formation of the two hairpins involved in the structure; for either pathway, formation of hairpin 1 is more likely to be the rate-limiting step. Altogether, our results suggest that PACE combined with network analysis is a computationally efficient and valuable tool for the study of protein folding.
机译:在这项研究中,我们应用了一个混合分辨率模型,即PACE,以表征trp-cage和WW域变体的自由能表面(FESs)以及各自的折叠机制。发现使用PACE进行的无偏倚,独立模拟可以同时实现两种蛋白质的多次折叠和解折叠事件,从而使我们能够对FES进行网络分析,以识别折叠途径。 PACE会为这两种蛋白质复制隐藏在折叠FES中的预期复杂性,特别是亚稳定的非天然中间体。途径分析表明,其中一些中间体实际上是途中折叠中间体,并且动力学上最接近天然状态的中间体可能是途中或途中的关键中间体,具体取决于蛋白质。除了对折叠的一般了解之外,还可以解决蛋白质的特定折叠机制。我们发现,trp-cage通过占主导地位的途径折叠,其中疏水塌陷发生在N末端螺旋形成之前。 Trp6完全掺入疏水核中是折叠的最后一步,但是,这可能不是限速步骤。对于研究的WW域变体,我们观察到两个主要折叠途径,其中涉及结构的两个发夹的形成顺序相反。对于任一途径,发夹1的形成更可能是限速步骤。总而言之,我们的结果表明,PACE与网络分析相结合是一种用于蛋白质折叠研究的高效计算和有价值的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号