首页> 美国卫生研究院文献>other >Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity
【2h】

Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity

机译:神经元突触可塑性的分子机制:系统生物学在突触可塑性的荒野中遇到了计算神经科学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, though the mapping between spatio-temporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of ERK activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases which produce long lasting synaptic plasticity. Though the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial model remains more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity.
机译:跨膜受体激活的信号通路之间的相互作用产生复杂的网络和突触可塑性牵连的动态行为。时间动态和空间方面是细胞反应如突触可塑性的关键决定因素,尽管时空活动模式和突触可塑性的方向之间的映射尚不完全清楚。神经元信号传导途径的计算模型极大地有助于理解突触可塑性的潜在信号传导途径。海马神经元信号通路的空间模型揭示了海马神经元ERK激活空间分布的潜在机制。其他空间模型表明,锚固蛋白在纹状体和海马突触可塑性中的主要作用是将分子置于其激活剂附近。对其他模型的仿真显示,突触可塑性的空间分布对于增强与抑制可能会有所不同。总的来说,交互式建模和实验已经取得了最重大的进步。因此,应采用跨学科方法研究神经元信号通路中的关键问题。这些问题包括确定哪些跨膜受体是激活神经元ERK的关键,以及产生持久突触可塑性的激酶的关键靶标。尽管用于大型反应扩散网络的高效计算仿真的计算机程序数量正在增加,但是与单室模型相比,这些空间模型中的参数估计和灵敏度分析仍然更加困难。活细胞成像的进展以及进一步的软件开发将继续加速突触可塑性空间模型的开发。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(5),6
  • 年度 -1
  • 页码 717–731
  • 总页数 20
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号