首页> 美国卫生研究院文献>other >Structural Basis for Binding of Fluorinated Glucose and Galactose to Trametes multicolor Pyranose 2-Oxidase Variants with Improved Galactose Conversion
【2h】

Structural Basis for Binding of Fluorinated Glucose and Galactose to Trametes multicolor Pyranose 2-Oxidase Variants with Improved Galactose Conversion

机译:氟化葡萄糖和半乳糖与Trametes多色吡喃糖2-氧化酶变体结合的结构基础具有改进的半乳糖转化率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.
机译:每年,液态乳清作为工业副产品产生约600万吨乳糖,最理想的是将这种大量的碳水化合物废物用于生产增值产品。 Trametes多色吡喃糖2-氧化酶(TmP2O)催化各种单糖氧化为相应的2-酮糖。因此,TmP2O的潜在用途是将乳糖水解产物,D-葡萄糖和D-半乳糖转化为更有价值的产物,例如塔格糖。然而,与半乳糖相比,葡萄糖的氧化非常受青睐,并且希望以更相等的速率氧化两种底物。较早地已经给出了具有改进的D-半乳糖转化的TmP2O变体(H450G,V546C,H450G / V546C)的表征,其中H450G在底物之间显示出最佳的相对转化率。为了合理化转化率的变化,我们分析了上述突变体的2-和3-氟化葡萄糖和半乳糖结合的高分辨率晶体结构。葡萄糖和半乳糖在生产性2-氧化结合模式下的结合在所有突变体中几乎相同,表明该结合模式基本上不受突变影响。对于竞争性葡萄糖结合模式,携带H450G替代物的酶变异体将葡萄糖稳定为α-端基异构体,可进行3-氧化。位置450上的骨架松弛使底物结合环在配体周围紧密折叠。但是,V546C使用开环构象将葡萄糖稳定为β-端基异构体。通过在关键的活性位点骨架位置上的微妙的松弛作用,可以改善半乳糖的结合。 V546C对半乳糖2-氧化的竞争结合模式稳定了C1处的β-异头物的氧化,而H450G变体则稳定了半乳糖α-异头物的3-氧化结合模式。本研究提供了结合模式的详细描述,该结合模式合理化了D-葡萄糖和D-半乳糖的相对转化率的变化,可用于完善未来的酶设计,以更有效地利用乳糖水解副产物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号