首页> 美国卫生研究院文献>other >The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair
【2h】

The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair

机译:具有矿物仿生梯度的PLGA纳米纤维支架的力学原理用于肌腱-骨修复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Attachment of dissimilar materials is prone to failure due to stress concentrations that can arise at interfaces. A compositionally or structurally graded transition can dissipate these stress concentrations and thereby toughen an attachment. The interface between compliant tendon and stiff bone utilizes a monotonic change in hydroxylapatite mineral (“mineral”) content to produce a gradient in mechanical properties and mitigate stress concentrations. Previous efforts to mimic the natural tendon-to-bone attachment have included electrospun nanofibrous polymer scaffolds with gradients in mineral. Mineralization of the nanofiber scaffolds has typically been achieved using simulated body fluid (SBF). Depending on the specific formulation of SBF, mineral morphologies ranged from densely packed small crystals to platelike crystal florets. Although this mineralization of scaffolds produced increases in modulus, the peak modulus achieved remained significantly below that of bone. Missing from these prior empirical approaches was insight into the effect of mineral morphology on scaffold mechanics and on the potential for the approach to ultimately achieve moduli approaching that of bone. Here, we applied two mineralization methods to generate scaffolds with spatial gradations in mineral content, and developed methods to quantify the stiffening effects and evaluate them in the context of theoretical bounds. We asked whether either of the mineralization methods we developed holds potential to achieve adequate stiffening of the scaffold, and tested the hypothesis that the smoother, denser mineral coating could attain more potent stiffening effects. Testing this hypothesis required development of and comparison to homogenization bounds, and development of techniques to estimate mineral volume fractions and spatial gradations in modulus. For both mineralization strategies, energy dispersive x-ray analysis demonstrated the formation of linear gradients in mineral concentration along the length of the scaffolds, and Raman spectroscopic analysis revealed that the mineral produced was hydroxylapatite. Mechanical testing showed that the stiffness gradient using the new method was significantly steeper. By analyzing the scaffolds using micromechanical modeling techniques and extrapolating from our experimental results, we present evidence that the new mineralization protocol has the potential to achieve levels of stiffness adequate to contribute to enhanced repair of tendon-to-bone attachments.
机译:由于界面处可能产生应力集中,异种材料的连接容易失效。成分或结构渐变过渡可以消除这些应力集中,从而增强附着力。顺应性肌腱和坚硬骨头之间的界面利用羟基磷灰石矿物(“矿物质”)含量的单调变化来产生机械性能的梯度并减轻应力集中。模仿天然肌腱到骨骼附着的先前努力包括在矿物中具有梯度的电纺纳米纤维聚合物支架。纳米纤维支架的矿化通常是使用模拟体液(SBF)实现的。根据SBF的具体配方,矿物形态从密堆积小晶体到板状晶体小花不等。尽管脚手架的这种矿化作用使模量增加,但达到的峰值模量仍显着低于骨骼。这些先前的经验方法缺乏对矿物形态对脚手架力学的影响以及最终实现模量接近骨骼模量的方法的洞察力。在这里,我们应用了两种矿化方法来生成具有矿物质含量空间梯度的脚手架,并开发了量化加劲效果并在理论范围内对其进行评估的方法。我们询问我们开发的任何一种矿化方法是否都具有实现脚手架充分硬化的潜力,并检验了以下假设:较光滑,致密的矿物涂层可以实现更有效的硬化效果。要检验此假设,需要开发均质边界并与之进行比较,还需要开发技术来估算矿物的体积分数和模量的空间梯度。对于这两种矿化策略,能量色散X射线分析均表明沿脚手架长度方向矿物质浓度形成线性梯度,拉曼光谱分析表明所产生的矿物质为羟基磷灰石。机械测试表明,使用新方法的刚度梯度要陡峭得多。通过使用微机械建模技术分析支架并从我们的实验结果推断,我们提供了证据,表明新的矿化方案具有实现足以增强肌腱-骨附着修复的刚度水平的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号