首页> 美国卫生研究院文献>other >Characterization of Sequential Collagen-Poly(ethylene glycol) Diacrylat Interpenetrating Networks and Initial Assessment of their Potential for Vascular Tissue Engineering
【2h】

Characterization of Sequential Collagen-Poly(ethylene glycol) Diacrylat Interpenetrating Networks and Initial Assessment of their Potential for Vascular Tissue Engineering

机译:顺序胶原蛋白-聚(乙二醇)双丙烯酸互穿网络的表征及其对血管组织工程潜力的初步评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due in part to the capacity of collagen to promote robust cell adhesion and elongation. However, collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly susceptible to cell-mediated contraction. In the current work, we develop and characterize a sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently crosslink the PEGDA by exposure to longwave UV light. These collagen-PEGDA IPNs allow for cell encapsulation during the fabrication process with greater than 90% cell viability via inclusion of cells within the collagen hydrogel precursor solution. Furthermore, the degree of cell spreading within the IPNs can be tuned from rounded to fully elongated by varying the time delay between the formation of the cell-laden collagen hydrogel and the formation of the PEGDA network. We also demonstrate that these collagen-PEGDA IPNs are able to support the initial stages of smooth muscle cell lineage progression by elongated human mesenchymal stems cells.
机译:胶原蛋白水凝胶已被广泛研究为血管组织工程的支架,部分原因是胶原蛋白具有促进强大的细胞粘附和伸长的能力。然而,胶原蛋白水凝胶显示出相对较低的硬度和强度,具有血栓形成性,并且对细胞介导的收缩高度敏感。在当前的工作中,我们开发并表征了顺序形成的互穿网络(IPN),该网络保留了胶原蛋白的优点,但显示出更高的机械刚度和强度,改善的血栓抵抗性,较高的物理稳定性和抗收缩性。在这种策略中,我们首先形成胶原蛋白水凝胶,然后将这种水凝胶注入聚(乙二醇)二丙烯酸酯(PEGDA)中,然后通过暴露于长波紫外光下使PEGDA交联。这些胶原蛋白-PEGDA IPN通过在胶原蛋白水凝胶前体溶液中包含细胞,从而在制造过程中实现细胞封装,并具有大于90%的细胞活力。此外,通过改变载有细胞的胶原蛋白水凝胶的形成与PEGDA网络形成之间的时间延迟,可以将IPN中的细胞扩散程度从圆形调整为完全拉长。我们还证明了这些胶原蛋白-PEGDA IPNs能够通过延长的人间充质干细胞支持平滑肌细胞谱系发展的初始阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号