首页> 美国卫生研究院文献>other >System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing
【2h】

System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing

机译:智能制造中的预测和健康管理系统设计中的系统相互依赖性建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies – Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) – can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets – components, subsystems, or systems – that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output.HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders’ understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system.A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system.
机译:风险分析,预测和健康管理(PHM)领域在很大程度上是独立发展的。但是,这两个领域都有一个共同的核心目标。他们希望管理由于内部或外部力量而与正在考虑的系统的预期功能失调相关的未来不良后果。本文介绍了如何将两种突出的风险分析理论和方法-分层全息建模(HHM)和风险过滤,排名和管理(RFRM)-进行调整,以支持智能制造过程中PHM系统的设计。具体而言,所提议的方法将用于确定目标–组件,子系统或系统–在实现以下目标方面将从PHM系统中最大受益:最小化成本,最小化生产/维护时间,最大化系统剩余使用寿命( RHM),最大化产品质量和最大化产品产量。HHM是一种全面的建模理论和方法,其前提是无法从单一角度对任何系统进行有效建模。它也可以用作场景构建的归纳方法,以识别系统中的紧急强制更改(EFC)。 EFC表示系统的外部或内部风险源趋势,可能会对系统的特定状态产生不利影响。主动风险管理的重要方面包括通过适当控制状态来增强特定EFC的系统弹性。特定EFC的风险情景可以成为设计预测和诊断系统的基础,这些系统可以提供实时预测和情景变化的识别。 HHM方法论包括视觉建模技术,可以增强利益相关者对智能制造系统相互依赖和相互联系的子系统之间共享状态,资源,目标和约束的理解。在风险分析中,HHM通常与“风险过滤,排名和管理(RFRM)”配对使用。 RFRM流程为用户(例如,技术开发人员,原始设备制造商(OEM),技术集成商,制造商)提供了对目标最关键的风险,可用于确定最关键的组件和子系统。受益于PHM系统。本文介绍了一个案例研究,其中HHM和RFRM在位于美国的活跃制造工厂的背景下适用于PHM。这些方法有助于确定制造过程中的关键风险,以及从已开发的PHM系统中最大受益的主要组件和子系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号