首页> 美国卫生研究院文献>other >Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology
【2h】

Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology

机译:心脏电生理多尺度模型快速钠电流稳态失活的不确定度定量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Perhaps the most mature area of multi-scale systems biology is the modelling of the heart. Current models are grounded in over fifty years of research in the development of biophysically detailed models of the electrophysiology (EP) of cardiac cells, but one aspect which is inadequately addressed is the incorporation of uncertainty and physiological variability. Uncertainty quantification (UQ) is the identification and characterisation of the uncertainty in model parameters derived from experimental data, and the computation of the resultant uncertainty in model outputs. It is a necessary tool for establishing the credibility of computational models, and will likely be expected of EP models for future safety-critical clinical applications. The focus of this paper is formal UQ of one major sub-component of cardiac EP models, the steady-state inactivation of the fast sodium current, INa. To better capture average behaviour and quantify variability across cells, we have applied for the first time an ‘individual-based’ statistical methodology to assess voltage clamp data. Advantages of this approach over a more traditional ‘population-averaged’ approach are highlighted. The method was used to characterise variability amongst cells isolated from canine epi and endocardium, and this variability was then ‘propagated forward’ through a canine model to determine the resultant uncertainty in model predictions at different scales, such as of upstroke velocity and spiral wave dynamics. Statistically significant differences between epi and endocardial cells (greater half-inactivation and less steep slope of steady state inactivation curve for endo) was observed, and the forward propagation revealed a lack of robustness of the model to underlying variability, but also surprising robustness to variability at the tissue scale. Overall, the methodology can be used to: (i) better analyse voltage clamp data; (ii) characterise underlying population variability; (iii) investigate consequences of variability; and (iv) improve the ability to validate a model. To our knowledge this article is the first to quantify population variability in membrane dynamics in this manner, and the first to perform formal UQ for a component of a cardiac model. The approach is likely to find much wider applicability across systems biology as current application domains reach greater levels of maturity.
机译:多尺度系统生物学最成熟的领域可能就是心脏建模。当前的模型是基于五十多年来对心脏细胞电生理学(EP)进行生物物理学详细模型开发的研究而建立的,但是未能充分解决的一个方面是不确定性和生理变异性的结合。不确定度量化(UQ)是识别和表征从实验数据得出的模型参数中的不确定性,以及对模型输出中所得不确定性的计算。它是建立计算模型可信度的必要工具,并且有望在未来的安全关键型临床应用中使用EP模型。本文的重点是心脏EP模型的一个主要子组件的正式UQ,即快速钠电流INa的稳态失活。为了更好地捕获平均行为并量化电池之间的变异性,我们首次采用了“基于个人”的统计方法来评估电压钳数据。与传统的“人口平均”方法相比,该方法的优势更加突出。该方法用于表征从犬上皮和心内膜分离的细胞之间的变异性,然后通过犬模型“向前传播”该变异性,以确定模型预测在不同尺度下产生的不确定性,例如上冲速度和螺旋波动力学。表皮和心内膜细胞之间存在统计学上的显着差异(半灭活更大,内在稳态灭活曲线的斜率较小),并且正向传播显示该模型对潜在变异性缺乏鲁棒性,但对变异性却具有令人惊讶的鲁棒性在组织规模上。总体而言,该方法可用于:(i)更好地分析电压钳数据; (ii)描述潜在的人口变异性; (iii)调查可变性的后果; (iv)提高验证模型的能力。据我们所知,本文是第一篇以这种方式量化膜动力学中群体变异性的文章,也是第一篇针对心脏模型组件执行正式UQ的文章。随着当前应用领域的成熟度提高,该方法可能会在整个系统生物学中找到更广泛的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号