首页> 美国卫生研究院文献>other >An Optimized Proportional-Derivative Controller for the Human Upper Extremity with Gravity
【2h】

An Optimized Proportional-Derivative Controller for the Human Upper Extremity with Gravity

机译:具有重力的人体上肢的优化比例微分控制器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design.
机译:当使用功能性电刺激(FES)恢复脊髓损伤(SCI)受试者的运动时,应选择肌肉刺激模式以产生准确而有效的运动。理想地,用于这种神经假体的控制器将具有可能的最简单的架构,以促进翻译成临床环境。在这项研究中,我们使用模拟退火算法针对3维手臂模型优化了两个比例微分(PD)反馈控制器增益集,该模型包含肌肉骨骼动力学,具有5个自由度和22块肌肉,执行目标定向的到达运动。通过最小化位置误差,方向误差和肌肉激活的加权总和来优化控制器增益。经过优化后,将根据到达运动的准确性和效率以及未针对我们的系统进行优化的其他三个基准增益集,对尚未优化控制器的大量动态到达运动进行增益性能评估,以进行测试概括能力。还测试了存在弱化肌肉时的健壮性。与三个标准增益集相比,发现两个优化的增益集在所有指标上都具有非常相似的性能,并且表现出明显更好的精度。研究的所有增益集均使用生理上可接受的肌肉激活量。结论是,优化可以在保持肌肉效率的同时显着改善控制器性能,并且应该将优化视为未来神经假体控制器设计的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号