首页> 美国卫生研究院文献>other >Expression of Beta-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants
【2h】

Expression of Beta-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants

机译:β-葡萄糖苷酶的表达增加了转基因青蒿植物中的毛线虫密度和青蒿素含量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript was confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography (HPLC, MS-TOF) data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (g-1DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to 5-fold in BGL1 transgenic flowers. The present study opens the possibility of increasing artemisinin content by manipulating trichomes density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children.
机译:青蒿素对恶性疟原虫的多药耐药菌株非常有效,恶性疟原虫是最严重形式的疟疾的病原体。然而,青蒿素在青蒿中的低水平积累是其生产和向世界疟疾流行地区运送的主要限制。尽管已经广泛探索了增强青蒿素的几种策略,但尚未考虑增强毛状体中的储存能力。因此,通过农杆菌介导的转化,随着农杆菌中β-葡萄糖苷酶(bgl1)基因的表达,毛状体密度增加。通过分子分析证实了转基因(bgl1)的整合和转录本。与蒿蒿对照植物相比,BGL1转基因植物的叶片中雌蕊的密度提高了20%,花朵中的雌蕊的密度提高了66%。高效液相色谱(HPLC,MS-TOF)数据显示,青蒿素含量在叶片中增加了1.4%,在花朵中增加了2.56%(g- 1 DW),与获得的最高产量相似通过代谢工程进行。青蒿素在BGL1转基因花中最多可增强5倍。本研究开辟了通过操纵毛状体密度增加青蒿素含量的可能性,毛状体密度是青蒿素的主要储库。将生物合成途径工程与提高毛状体密度结合起来,可以进一步提高青蒿中青蒿素的产量。因为口服蒿属植物细胞比纯化药物更有效地降低了寄生虫病,降低了耐药性,并降低了昂贵的纯化过程的成本,所以增强表达应在使这种有价值的药物可负担得起的全球大量疟疾治疗中发挥重要作用。影响低社会经济地区和贫困儿童。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号