首页> 美国卫生研究院文献>other >Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones
【2h】

Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones

机译:不同农业气候区玉米电感耦合等离子体质谱法表型核矿物质浓度和籽粒产量的稳定性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield.
机译:铁和锌的缺乏会导致微量营养素营养不良或饥饿隐患,严重影响全球约25%的人口。玉米的遗传生物强化已经成为解决铁和锌缺乏营养不良的经济有效且可持续的方法。因此,了解玉米自交系籽粒微量营养素的遗传变异和稳定性以及玉米自交系的产量是育种富含微量营养素的高产杂交种以减轻微量营养素营养不良的先决条件。我们在这里报告了一组50个玉米自交系的籽粒中微量营养素浓度和籽粒产量的遗传变异性和稳定性,这些自交系选自印度和印度六个玉米种植地区的国家和国际中心。使用电感耦合等离子体质谱法(ICP-MS)进行籽粒表型分析显示,籽粒矿物质浓度存在很大差异(铁:18.88至47.65 mg kg -1 ;锌:5.41至30.85 mg kg – 1 ;锰:3.30至17.73 mg kg –1 ;铜:0.53至5.48 mg kg -1 ),单产(826.6至5413 kg公顷) –1 )。在籽粒中铁和锌之间(r = 0.37至r = 0.52,p <0.05)和跨位置(r = 0.44,p <0.01)观察到显着正相关。加性主效应和乘性相互作用(AMMI)模型的方差成分显示出显着的基因型和基因型×环境相互作用对籽粒矿物质浓度和谷物产量的影响。大部分变异是由基因型对铁(39.6%),锰(41.34%)和铜(41.12%)的主效应以及对锌(40.5%)和谷物产量(37.0%)的环境主效应共同作用的。基因型的主要作用加上基因型与环境之间的相互作用(GGE)双线图确定了数种巨型环境,用于籽粒矿物质和谷物产量。稳定性参数的比较表明,AMMI稳定性值(ASV)可以更好地代表AMMI稳定性参数。动态稳定性参数GGE距离(GGED)与平均籽粒浓度和谷物产量均表现出强正相关。从本次调查中鉴定出的自交系(CM-501,SKV-775,HUZM-185)将有助于开发富含微营养素以及稳定的玉米杂交种,而不会影响谷物产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号