首页> 美国卫生研究院文献>other >Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management
【2h】

Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management

机译:通过优化作物和土壤管理开发增加水稻产量和减少温室气体排放的共同效益

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale.
机译:在不进一步牺牲环境完整性的情况下应对未来的粮食安全挑战,需要对管理关键生物物理决定因素的变革进行变革,这些决定因素提高了农业生产力,并减少了环境足迹。在这里,我们专注于中国大米的生产,并通过在各种水稻种植体系中进行403次农场试验来定量解决这一问题。固有的土壤生产力,管理措施和水稻种植类型导致对产量,产量差距和温室气体(GHG)排放量(N2O,CH4和CO2当量)的混淆和相互作用,同时具有权衡和补偿作用。氮,水和作物管理方面的进步(最佳管理实践—BMPs)有助于弥合现有的产量差距,并导致稻田二氧化碳排放量的大幅减少,尽管要增加N2O排放量。但是,固有的土壤特性比以前已知的更大程度地限制了水稻的产量。种植天生更好的土壤也会导致温室气体强度降低(单位产量的温室气体排放量)。仅采用BMP或仅改良生产率低下或中等的土壤都不能充分应对大幅增加水稻产量同时减少环境足迹的挑战。两者的结合是最有效的策略,可以利用提高产量和缓解气候变化的综合效益。从我们的农场数据推算,该策略可将中国的稻米产量提高18%,到2030年将满足人类直接食用稻米的需求。还将使肥料氮的消耗量减少22%,并减少农业生产期间的二氧化碳当量排放。与目前的耕作方式相比,水稻的生长期延长了7%。收益因水稻种植系统而异。单稻系统因其更大的产量差距和总耕地面积而具有最大的粮食供应效益,而双稻系统(尤其是晚稻)则主要有助于减少温室气体排放。因此,该研究为以农场为基础的证据,为在全国范围内实现现实的粮食安全和环境质量目标提供了可行的实用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号