首页> 美国卫生研究院文献>other >A CFD-informed quasi-steady model of flapping wing aerodynamics
【2h】

A CFD-informed quasi-steady model of flapping wing aerodynamics

机译:基于CFD的襟翼空气动力学拟稳态模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
机译:襟翼飞行期间的气动性能和敏捷性由机翼形状和运动学特性共同决定。形态和运动学优化的程度是未知的,并取决于较大的参数空间。为了提供一种精确且计算便宜的襟翼空气动力学建模工具,我们提出了一种新颖的CFD(计算流体动力学)信息准稳态模型(CIQSM),该模型假定襟翼上的空气动力可以分解为准稳态力并基于CFD结果进行参数化。使用最小二乘拟合,我们为准稳态模型确定了一组比例系数,该模型将机翼运动学与瞬时空气动力和扭矩联系起来。我们用准稳态转矩和角速度的乘积来计算功率。通过在高逼真CFD模型的基础上完全独立地设置准稳态模型,与常规叶片元素模型(BEM)相比,它能够更准确地预测襟翼的空气动力和动力。该改进可以归因于例如考虑到引起的向下冲洗和翼尖涡旋对力产生和功率消耗的影响。我们的模型通过比较CFD模型和当前准稳态模型的空气动力学特性,并以鹰蛾盘旋为例进行了验证。它表明,CIQSM在保持计算便宜的同时胜过传统的BEM,因此可以成为揭示生物飞行器和无人飞行系统的襟翼飞行中运动学和形态学优化和控制机制的有效工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号