首页> 美国卫生研究院文献>other >Topological diversity of chromatin fibers: Interplay between nucleosome repeat length DNA linking number and the level of transcription
【2h】

Topological diversity of chromatin fibers: Interplay between nucleosome repeat length DNA linking number and the level of transcription

机译:染色质纤维的拓扑多样性:核小体重复长度DNA连接数和转录水平之间的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10–70 bp (nucleosome repeat length NRL = 157–217 bp). In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers—one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers—that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome ΔLk ≈ −1.5 and −1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL). We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption.
机译:30 nm纤维中核小体的空间组织仍然未知。为了解决这个问题,我们分析了具有DNA连接子L = 10–70 bp(核小体重复长度NRL = 157–217 bp)的双起始染色质纤维的所有立体化学可能构型。在我们的模型中,纤维的能量是接头DNA的弹性能量,空间排斥力,静电以及两个堆叠的核小体之间H4尾酸补丁相互作用的总和。我们发现了纤维在能量上可行的两个家族,一个家族观察较早,另一个新颖。这两个家族的纤维以不同的DNA连接数为特征-即它们在拓扑结构上是不同的。值得注意的是,光纤的最佳几何形状及其拓扑结构取决于接头长度:接头L = 10n和10n + 5 bp的光纤每个核小体的DNA连接数分别为ΔLk≈-1.5和-1.0。换句话说,DNA超螺旋的水平与染色质纤维中核小体间接头的长度直接相关(因此与NRL相关)。我们假设染色质纤维的这种拓扑多态性可能在转录过程中起作用,已知转录过程会在RNA聚合酶的上游和下游产生不同水平的DNA超螺旋。对活跃和沉默酵母基因中NRL分布的全基因组分析得出与该假设一致的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号