首页> 美国卫生研究院文献>other >Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
【2h】

Ferromagnetic and antiferromagnetic order in bacterial vortex lattices

机译:细菌涡旋晶格中的铁磁和反铁磁顺序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite their inherent non-equilibrium nature, living systems can self-organize in highly ordered collective states, that share striking similarities with the thermodynamic equilibrium phases, of conventional condensed matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies,, microbial suspensions, and tissues to the coherent macro-scale dynamics in schools of fish and flocks of birds. Yet, the generic mathematical principles that govern the emergence of structure in such artificial and biological, systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: Through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct phases of ferro- and antiferromagnetic order. The preferred phase can be controlled by tuning the vortex coupling through changes of the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currentshref="#R15" rid="R15" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_569480139">15,href="#R16" rid="R16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_569480150">16, reminiscent of those in quantum systemshref="#R17" rid="R17" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_585295000">17href="#R19" rid="R19" class=" bibr popnode">19. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems.
机译:尽管生命系统具有固有的非平衡性质 ,但它们仍可以在高度有序的集体状态中进行自我组织,而这些状态具有共同的意义: 与传统的冷凝物和流体系统的热力学平衡相 具有惊人的相似性。例子包括细菌菌落的液晶样排列 ,微生物悬浮液 ,< / sup> 和组织 到鱼 和鸟群 的一致宏观动力学中。但是,控制这类人工 和生物学 的结构出现的通用数学原理, 系统难以捉摸。尚不清楚何时或什至是,建立良好的描述平衡系统的普遍热力学的理论概念能否捕获和分类生物的有序状态。在这里,我们将这两个先前截然不同的机制联系起来:通过微流体实验和数学建模,我们证明了流体动力学耦合细菌涡流的晶格可以自发组织成铁磁和反铁磁有序的不同相。可以通过改变腔间间隙宽度来调节涡旋耦合来控制优选相位。逆序制度的出现与几何形状引起的边缘电流的存在紧密相关 href="#R15" rid="R15" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_569480139"> 15 < / a> href="#R16" rid="R16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_569480150"> 16 ,让人想起量子系统中的量子元素 href="#R17" rid="R17" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_585295000"> 17 href="#R19" rid="R19" class=" bibr popnode"> 19 。我们的实验观察可以根据通用的晶格场理论进行合理化,表明细菌自旋网络与广泛的平衡系统属于同一通用性类别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号