首页> 美国卫生研究院文献>other >Quantifying Drug-Induced Nanomechanics and Mechanical Effects to Single Cardiomyocytes for Optimal Drug Administration To Minimize Cardiotoxicity
【2h】

Quantifying Drug-Induced Nanomechanics and Mechanical Effects to Single Cardiomyocytes for Optimal Drug Administration To Minimize Cardiotoxicity

机译:量化药物诱导的纳米力学和机械效应对单个心肌细胞的最佳药物管理以最大程度地降低心脏毒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Contrary to the well-studied dynamics and mechanics at organ and tissue levels, there is still a lack of good understanding for single cell dynamics and mechanics. Single cell dynamics and mechanics may act as an interface to provide unique information reflecting activities at the organ and tissue levels. This research was aimed at quantifying doxorubicin- and dexrazoxane-induced nanomechanics and mechanical effects to single cardiomyocytes, to reveal the therapeutic effectiveness of drugs at the single cell level and to optimize drug administration for reducing cardiotoxicity. This work employed a nanoinstrumentation platform, including a digital holographic microscope combined with an atomic force microscope, which can characterize cell stiffness and beating dynamics in response to drug exposures in real time and obtain time-dose-dependent effects of cardiotoxicity and protection. Through this research, an acute increase and a delayed decrease of surface beating force induced by doxorubicin was characterized. Dexrazoxane treated cells maintained better beating force and mechanical functions than cells without any treatment, which demonstrated cardioprotective effects of dexrazoxane. In addition, combined drug effects were quantitatively evaluated following various drug administration protocols. Preadministration of dexrazoxane was demonstrated to have protective effects against doxorubicin, which could lead to better strategies for cardiotoxicity prevention and anticancer drug administration. This study concluded that quantification of nanomechanics and mechanical effects at the single cell level could offer unique insights of molecular mechanisms involved in cellular activities influencing organ and tissue level responses to drug exposure, providing a new opportunity for the development of effective and time-dose-dependent strategies of drug administration.
机译:与深入研究器官和组织水平的动力学和力学相反,对单细胞动力学和力学仍然缺乏很好的理解。单细胞动力学和力学可以充当界面,以提供反映器官和组织水平活动的独特信息。这项研究旨在量化阿霉素和右雷佐生诱导的对单个心肌细胞的纳米力学和机械作用,以揭示药物在单细胞水平上的治疗效果,并优化药物给药以降低心脏毒性。这项工作采用了一个纳米仪器平台,包括一个数字全息显微镜和一个原子力显微镜,该平台可以实时表征药物暴露时细胞的刚度和搏动动力学,并获得依赖于时间剂量的心脏毒性和保护作用。通过这项研究,表征了由阿霉素引起的表面跳动力的急剧增加和延迟减少。与未进行任何处理的细胞相比,经地佐恶烷处理的细胞保持了更好的搏动力和机械功能,这证明了地佐恶烷的心脏保护作用。此外,根据各种药物给药方案对联合用药效果进行了定量评估。事实证明,右雷佐生的预先给药对阿霉素具有保护作用,这可能导致更好的预防心脏毒性和抗癌药物的策略。这项研究得出的结论是,在单个细胞水平上对纳米力学和机械作用进行定量分析,可以为参与细胞活动影响器官和组织水平对药物暴露的反应的分子机制提供独特的见解,从而为开发有效的时间剂量药物提供了新的机会。药物管理的依赖策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号