首页> 美国卫生研究院文献>other >AXSIS: Exploring the frontiers in attosecond X-ray science imaging and spectroscopy
【2h】

AXSIS: Exploring the frontiers in attosecond X-ray science imaging and spectroscopy

机译:AXSIS:探索亚秒级X射线科学成像和光谱学的前沿领域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser-, accelerator,- X-ray scientists as well as spectroscopists and biochemists optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. Ultimately, the new capability, attosecond serial X-ray crystallography and spectroscopy, will be applied to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis.
机译:X射线晶体学是确定整个分子光谱的原子分辨率3D图像的主要方法之一,该分子光谱范围从小的无机团簇到由构成生命大分子机械的数十万个原子组成的大型蛋白质复合物。生命不是一成不变的,揭示化学和生物学中最重要反应的结构和动力学对于揭示其机理至关重要。其中许多反应都是光诱导的,包括驱动我们生物圈的光合作用,并且发生的时间超快。这些主要是通过光谱学和超快激光技术实现的,以高时间分辨率进行了研究,但它们将过程的巨大复杂性降低到几个反应坐标。在由欧洲研究理事会资助的汉堡CFEL的AXSIS项目中,我们开发了亚秒级串联X射线晶体学和光谱学的新方法,以全面描述在现实空间和电子能量环境中原子分解的超快过程。 ,来自X射线和光谱的共同测量以及X射线衍射。这项技术将彻底改变我们对原子和分子结构和功能的理解,从而揭示化学和生物学中的基本过程,例如能量转换过程。为此,我们基于自由电子晶体的相干逆康普顿散射,开发了一种紧凑的,完全相干,太赫兹驱动的秒X射线源,其克服了必需的高X射线辐照所需的辐射损伤效应获取衍射信号。这个高度协同的项目从完全清洁的板岩开始,而不是符合大型自由电子激光器(FEL)用户设施的规格,以优化整个仪器,从而对光吸收和激发能转移的机理进行基本测量。由激光,加速器,X射线科学家以及光谱学家和生化学家组成的多学科团队,可以优化X射线脉冲参数,并与样品输送,晶体尺寸和先进的X射线探测器配合使用。最终,这种新的功能(亚秒级串行X射线晶体学和光谱学)将应用于结构生物学中最重要的问题之一,该问题将阐明光合作用中的光反应,电子转移和蛋白质结构的动力学。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号