首页> 美国卫生研究院文献>other >A Reversibly Sealed Easy Access Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces
【2h】

A Reversibly Sealed Easy Access Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces

机译:可逆密封易于访问的模块化(SEAM)微流体体系结构用于建立体外组织接口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 >μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.
机译:微流体屏障组织模型已成为一种先进的体外工具,用于探索与外部刺激(例如候选药物,病原体或毒素)的相互作用。但是,建立和维护这些系统所需的过程对于最终用户(尤其是没有大量内部工程专业知识的最终用户)实施起来可能具有挑战性。在这里,我们提出了一种基于模块的方法,该方法提供了易于使用的工作流来建立,维护和分析微型组织构造。我们的方法始于可移动的培养插入物,该插入物在独立的预制微流体模块之间进行磁耦合,去耦和转移,以简化细胞播种,培养和下游分析。模块化方法允许多种灌注选项,包括标准注射泵或与自包含的重力供料模块集成,以简化细胞维护。作为概念证明,我们建立了原代人微血管内皮细胞(HMVEC)的培养,并报告了用细菌内毒素脂多糖(LPS)进行根尖刺激后结合的表面蛋白成像和基因表达。我们还展示了通过整合超薄(<1 >μ m),具有脑特异性杨氏模量的自组装透明质酸/肽两亲性培养膜将水合生物材料界面整合到微流体体系结构中的可行性。 (〜1kPa)。为了强调将仿生接口包括在微型模型中的重要性,我们报告了自培养在自组装膜上的原代大鼠皮层细胞的多层读数,并比较了一组具有主要脑组织特征的mRNA目标。我们希望这里介绍的模块化方法和简化的工作流程将使广泛的研究小组将微流体屏障组织模型纳入其工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号