首页> 美国卫生研究院文献>other >Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations
【2h】

Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

机译:高场二维固态NMR光谱和密度泛函理论计算研究的植物原代细胞壁中的纤维素结构多态性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of 13C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses.
机译:细菌,藻类和动物来源的天然纤维素已经使用X射线和中子衍射以及固态NMR光谱在结构上进行了很好的研究,并且已知由不同比例的两种同素异形体Iα和Iβ组成,它们的氢原子不同键合,链包装和局部构象。相比之下,由于植物纤维素具有较低的结晶度以及与基质多糖的广泛相互作用,因此对植物原代细胞壁中纤维素结构的了解还很少。在这里,我们将高磁场下的二维魔术角旋转(MAS)固态核磁共振(solid-state NMR)光谱与密度泛函理论(DFT)计算相结合,以获得有关结构多态性和空间的详细信息植物初生壁纤维素的分布。几种模型植物的均匀 13 C标记的细胞壁的二维 13 C- 13 C相关光谱解决了七组纤维素化学位移。在这些之中,五组(表示为a-e)属于微原纤维内部的纤维素,而两组(f和g)可以分配给表面纤维素。重要的是,大多数内部纤维素 13 C的化学位移与Iα和Iβ同种异形体的 13 C的化学位移显着不同,表明植物的初生壁纤维素具有不同的构象。 ,来自其他生物的纤维素的堆积和氢键。较长混合时间和水极化转移的2D 13 C- 13 C相关性实验揭示了这些纤维素结构的空间分布和基质-多糖相互作用。纤维素f和g是微纤维表面上充分混合的链,纤维素a和b是与表面链分子接触的内链,而纤维素c位于微纤维的核心中,与表面自旋扩散接触。有趣的是,纤维素d的化学位移与细菌,藻类和动物纤维素的化学位移最明显不同,它与半纤维素相互作用,水合不良,并且在壁松动过程中被蛋白expansin靶向。为了获得有关这些植物纤维素的C6羟甲基构象的信息,我们使用Iα和Iβ晶体结构作为模板并改变了C5-C6扭转角,对 13 C化学位移进行了DFT计算。与实验化学位移的比较表明,所有内部纤维素都倾向于tg构象,但是纤维素d也具有相似的采用gt构象的倾向。这些结果表明,植物原代细胞壁中的纤维素由于与基质多糖的相互作用而具有多态性结构,而不是Iα和Iβ同种异型体的简单叠加,因此将它们与细菌和动物纤维素区分开来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号