首页> 美国卫生研究院文献>other >A Simple Hydraulic Analog Model of Oxidative Phosphorylation
【2h】

A Simple Hydraulic Analog Model of Oxidative Phosphorylation

机译:氧化磷酸化的简单水力模拟模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondrial oxidative phosphorylation is the primary source of cellular energy transduction in mammals. This energy conversion involves dozens of enzymatic reactions, energetic intermediates, and the dynamic interactions among them. With the goal of providing greater insight into the complex thermodynamics and kinetics (“thermokinetics”) of mitochondrial energy transduction, a simple hydraulic analog model of oxidative phosphorylation is presented. In the hydraulic model water tanks represent the forward and back “pressures” exerted by thermodynamic driving forces: The matrix redox potential (ΔGredox), the electrochemical potential for protons across the mitochondrial inner membrane (ΔGH+), and the free energy of ATP (ΔGATP). Net water flow proceeds from tanks with higher water pressure to tanks with lower pressure through “enzyme pipes” whose diameters represent the conductances (effective activities) of the proteins that catalyze the energy transfer. These enzyme pipes include the reactions of dehydrogenase enzymes, the electron transport chain (ETC), and the combined action of ATP synthase plus the ATP:ADP exchanger that spans the inner membrane. Additionally, reactive oxygen species production is included in the model as a leak that is driven out of the ETC pipe by high pressure (high ΔGredox), and a proton leak dependent upon the ΔGH+ for both its driving force and the conductance of the leak pathway. Model water pressures and flows are shown to simulate thermodynamic forces and metabolic fluxes that have been experimentally observed in mammalian skeletal muscle in response to acute exercise, chronic endurance training, and reduced substrate availability, as well as account for the thermokinetic behavior of mitochondria from fast- and slow-twitch skeletal muscle and the metabolic capacitance of the creatine kinase reaction.
机译:线粒体的氧化磷酸化是哺乳动物细胞能量转导的主要来源。这种能量转换涉及数十种酶促反应,高能中间体以及它们之间的动态相互作用。为了更深入地了解线粒体能量转导的复杂热力学和动力学(“热动力学”),提出了一种简单的氧化磷酸化水力模拟模型。在液压模型中,水箱代表由热力学驱动力施加的前后“压力”:基质氧化还原电势(ΔGredox),质子穿过线粒体内膜的电化学电势(ΔGH + ),和ATP的自由能(ΔGATP)。净水流通过“酶管”从水压较高的水箱流向压力较低的水箱,水管的直径代表催化能量转移的蛋白质的电导(有效活性)。这些酶管道包括脱氢酶,电子传输链(ETC)的反应,以及ATP合酶与跨越内膜的ATP:ADP交换剂的联合作用。此外,模型中包括活性氧物质的产生,这是由高压(高ΔGredox)驱使从ETC管道中逸出的泄漏,以及质子泄漏均取决于ΔGH + 力和泄漏通路的电导。显示了模型水压力和流量,以模拟在哺乳动物骨骼肌中响应急性运动,长期耐力训练和降低的底物利用率而在实验中观察到的热力学力和代谢通量,并考虑了线粒体的快速热动力学行为-和缓慢抽搐的骨骼肌和肌酸激酶反应的代谢能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号