首页> 美国卫生研究院文献>other >Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering hydroxyl radical footprinting and computational docking
【2h】

Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering hydroxyl radical footprinting and computational docking

机译:iSPOT对多蛋白复合物的理论建模:小角X射线散射羟基自由基足迹和计算对接的集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Structural determination of protein-protein complexes such as multidomain nuclear receptors has been challenging for high-resolution structural techniques. Here, we present a combined use of multiple biophysical methods, termed iSPOT, an integration of shape information from small-angle X-ray scattering (SAXS), protection factors probed by hydroxyl radical footprinting, and a large series of computationally docked conformations from rigid-body or molecular dynamics (MD) simulations. Specifically tested on two model systems, the power of iSPOT is demonstrated to accurately predict the structures of a large protein-protein complex (TGFβ-FKBP12) and a multidomain nuclear receptor homodimer (HNF-4α), based on the structures of individual components of the complexes. Although neither SAXS nor footprinting alone can yield an unambiguous picture for each complex, the combination of both, seamlessly integrated in iSPOT, narrows down the best-fit structures that are about 3.3 Å and 4.2 Å in RMSD from their corresponding crystal structures, respectively. Furthermore, this proof-of-principle study based on the data synthetically derived from available crystal structures shows that the iSPOT—using either rigid-body or MD-based flexible docking—is capable of overcoming the shortcomings of standalone computational methods, especially for HNF-4α. By taking advantage of the integration of SAXS-based shape information and footprinting-based protection/accessibility as well as computational docking, this iSPOT platform is set to be a powerful approach towards accurate integrated modeling of many challenging multiprotein complexes.
机译:蛋白质-蛋白质复合物(例如多域核受体)的结构确定对于高分辨率结构技术一直具有挑战性。在这里,我们提出了多种生物物理方法的组合使用,这些方法称为iSPOT,小角度X射线散射(SAXS)的形状信息的集成,羟基自由基足迹探测的保护因子,以及一系列从刚性的计算对接构象体或分子动力学(MD)模拟。在两个模型系统上进行了专门测试,证明了iSPOT的功能可以根据蛋白质的单个成分的结构准确预测大型蛋白质-蛋白质复合物(TGFβ-FKBP12)和多域核受体同源二聚体(HNF-4α)的结构。复杂。尽管单独使用SAXS或足迹都无法为每个复合物提供清晰的图像,但两者的无缝集成可无缝集成到iSPOT中,从而缩小了RMSD中最适合的结构,分别从其相应的晶体结构缩小了约3.3Å和4.2Å。此外,基于从可用晶体结构综合得出的数据进行的这项原理验证研究表明,iSPOT(使用刚体或基于MD的灵活对接)能够克服独立计算方法的缺点,尤其是对于HNF -4α。通过利用基于SAXS的形状信息和基于足迹的保护/可访问性以及计算对接的集成,该iSPOT平台将成为对许多具有挑战性的多蛋白复合物进行精确集成建模的有力方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号