首页> 美国卫生研究院文献>other >Cyanobacterial Diazotrophy and Earth’s Delayed Oxygenation
【2h】

Cyanobacterial Diazotrophy and Earth’s Delayed Oxygenation

机译:蓝藻重氮和地球的延迟氧合作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The redox landscape of Earth’s ocean-atmosphere system has changed dramatically throughout Earth history. Although Earth’s protracted oxygenation is undoubtedly the consequence of cyanobacterial oxygenic photosynthesis, the relationship between biological O2 production and Earth’s redox evolution remains poorly understood. Existing models for Earth’s oxygenation cannot adequately explain the nearly 2.5 billion years delay between the origin of oxygenic photosynthesis and the oxygenation of the deep ocean, in large part owing to major deficiencies in our understanding of the coevolution of O2 and Earth’s key biogeochemical cycles (e.g., the N cycle). For example, although possible links between O2 and N scarcity have been previously explored, the consequences of N2 limitation for net biological O2 production have not been examined thoroughly. Here, we revisit the prevailing view that N2 fixation has always been able to keep pace with P supply and discuss the possibility that bioavailable N, rather than P, limited export production for extended periods of Earth’s history. Based on the observation that diazotrophy occurs at the expense of oxygenesis in the modern ocean, we suggest that an N-limited biosphere may be inherently less oxygenic than a P-limited biosphere—and that cyanobacterial diazotrophy was a primary control on the timing and tempo of Earth’s oxygenation by modulating net biogenic O2 fluxes. We further hypothesize that negative feedbacks inhibit the transition between N and P limitation, with the implication that the pervasive accumulation of O2 in Earth’s ocean-atmosphere system may not have been an inevitable consequence of oxygenic photosynthesis by marine cyanobacteria.
机译:在整个地球历史上,地球海洋-大气系统的氧化还原景观发生了巨大变化。尽管毫无疑问,地球长时间的氧合作用是蓝细菌的氧光合作用的结果,但生物O2的产生与地球氧化还原反应之间的关系仍然知之甚少。现有的地球氧合作用模型不能充分解释氧合光合作用和深海氧合作用之间的将近25亿年的延迟,这在很大程度上是由于我们对O2和地球关键生物地球化学循环的共同理解的主要缺陷。 ,N个循环)。例如,尽管先前已经探讨了O2和N稀缺之间的可能联系,但尚未彻底检查N2限制对净生物O2产生的影响。在这里,我们重新审视普遍存在的观点,即固氮始终能够与磷的供应保持同步,并讨论了生物可利用的氮而不是磷限制了地球历史较长时期的出口生产的可能性。基于现代海洋中重氮营养以氧化作用为代价的观察结果,我们建议一个N限制生物圈固有地比P限制生物圈具有更低的氧含量,而蓝细菌重氮营养是时间和速度的主要控制因素通过调节生物净氧通量来改变地球的氧合作用。我们进一步假设负反馈会抑制N和P限制之间的转换,这暗示着O2在地球海洋-大气系统中的普遍积累可能不是海洋蓝细菌进行光合作用的必然结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号