首页> 美国卫生研究院文献>other >Persistent Memory in Single Node Delay-Coupled Reservoir Computing
【2h】

Persistent Memory in Single Node Delay-Coupled Reservoir Computing

机译:单节点延迟耦合水库计算中的持久性存储器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.
机译:延迟在生物系统中无处不在,从遗传调控网络和突触传导到掠食者/祈祷种群的相互作用。越来越多的证据表明,不仅存在作为信号传播速度的物理限制的延迟,而且还存在它们在为组成它们的系统提供动态多样性方面的功能作用。后来在生物系统中的观察启发了通过延迟耦合单个非线性元素到自身来利用这种动态多样性的计算体系结构的最新发展。该体系结构是储层计算的一种特殊实现,其中,与传统的递归神经网络实现一样,刺激是及时而不是在空间中注入系统的。该体系结构还具有内部存储器,该存储器会随着时间的推移而逐渐消失,这是任何储层计算设备正常工作的重要前提。但是,衰落存储器也是对任何需要持久存储的计算的限制。为了克服此限制,当前的工作是基于已训练的线性反馈为单节点延迟耦合水库引入扩展版本。我们通过数值模拟表明,将任务特定的线性反馈添加到单节点延迟耦合水库中,可以将可解决任务的类别扩展到需要不褪色内存的任务。通过几个案例研究,我们证明了扩展系统执行依赖于过去信息的复杂非线性计算的能力,而仅具有衰落内存的系统的计算能力迅速下降。我们的发现为具有扩展功能的具有生物学灵感的超快速计算设备的未来物理实现提供了理论基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号