首页> 美国卫生研究院文献>other >Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning
【2h】

Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning

机译:使用机器学习设计的低成本和移动等离子阅读器进行计算传感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plasmonic sensors have been used for a wide-range of biological and chemical sensing applications. Emerging nano-fabrication techniques have enabled these sensors to be cost-effectively mass-manufactured onto various types of substrates. To accompany these advances, major improvements in sensor read-out devices must also be achieved to fully realize the broad impact of plasmonic nano-sensors. Here, we propose a machine learning framework which can be used to design low-cost and mobile multi-spectral plasmonic readers that do not use traditionally employed bulky and expensive stabilized light-sources or high-resolution spectrometers. By training a feature selection model over a large set of fabricated plasmonic nano-sensors, we select the optimal set of illumination light-emitting-diodes needed to create a minimum-error refractive index prediction model, which statistically takes into account the varied spectral responses and fabrication-induced variability of a given sensor design. This computational sensing approach was experimentally validated using a modular mobile plasmonic reader. We tested different plasmonic sensors with hexagonal and square periodicity nano-hole arrays, and revealed that the optimal illumination bands differ from those that are ‘intuitively’ selected based on the spectral features of the sensor, e.g., transmission peaks or valleys. This framework provides a universal tool for the plasmonics community to design low-cost and mobile multi-spectral readers, helping the translation of nano-sensing technologies to various emerging applications such as wearable sensing, personalized medicine, and point-of-care diagnostics. Beyond plasmonics, other types of sensors that operate based on spectral changes can broadly benefit from this approach, including e.g., aptamer-enabled nanoparticle assays and graphene-based sensors, among others.
机译:等离子体传感器已被广泛用于生物和化学传感应用。新兴的纳米制造技术使这些传感器能够经济有效地大规模制造到各种类型的基板上。伴随着这些进步,还必须对传感器读出设备进行重大改进,以充分实现等离子体纳米传感器的广泛影响。在这里,我们提出了一种机器学习框架,该框架可用于设计低成本和移动式多光谱等离激元阅读器,该阅读器不使用传统上使用的笨重且昂贵的稳定光源或高分辨率光谱仪。通过在大量制造的等离子体纳米传感器上训练特征选择模型,我们选择了创建最小误差折射率预测模型所需的最佳照明发光二极管组,该模型在统计上考虑了变化的光谱响应以及给定传感器设计的制造引起的可变性。这种计算感测方法已通过模块化移动等离激子阅读器进行了实验验证。我们用六边形和正方形周期性纳米孔阵列测试了不同的等离激元传感器,发现最佳照明带与根据传感器的光谱特征(例如,透射峰或谷)“直观”选择的照明带不同。该框架为等离子学社区提供了一种设计低成本和移动多光谱读取器的通用工具,有助于将纳米传感技术转换为各种新兴应用,例如可穿戴式传感,个性化医学和即时诊断。除了等离激元学之外,基于光谱变化而运行的其他类型的传感器也可以从该方法中广泛受益,包括例如支持适体的纳米颗粒测定和基于石墨烯的传感器等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号