首页> 美国卫生研究院文献>other >Protein-free formation of bone-like apatite: New insights into the key role of carbonation
【2h】

Protein-free formation of bone-like apatite: New insights into the key role of carbonation

机译:不含蛋白质的骨状磷灰石形成:碳酸化的关键作用的新见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials.
机译:骨矿物质的纳米级板状形态对于适当的骨力学和生理学是必需的。然而,调节这些矿物纳米晶体的形态的机制仍不清楚。占主导地位的假设将大小和形状调节归因于有机矿物相互作用。在这里,我们提供的数据支持以下假设,即磷灰石晶格内碳酸盐整合的物理化学作用控制着生物磷灰石矿物晶体的形态,大小和力学。在没有有机分子的情况下合成的碳酸磷灰石呈现出板状形态和纳米级微晶尺寸。实验确定的微晶尺寸,晶格间距,溶解度和原子序数可通过碳酸盐浓度进行修改。分子动力学(MD)模拟和密度泛函理论(DFT)计算可预测表面能和弹性模量随碳酸盐浓度的变化。将这些结果与缩放定律相结合,可以预测实验观察到的尺寸和高能物质随碳酸盐浓度的缩放。实验和模型描述了一个清晰的机制,通过该机制,碳酸盐的取代控制了晶体的尺寸。此外,结果表明碳酸盐取代足以驱动骨状微晶的形成。这种新的理解指出了新型,纳米结构生物材料的仿生合成途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号