首页> 美国卫生研究院文献>other >Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip
【2h】

Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip

机译:芯片上的纳米磁力调节皮层神经元细胞内囊泡的运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vesicle transport is a major underlying mechanism of cell communication. Inhibiting vesicle transport in brain cells results in blockage of neuronal signals, even in intact neuronal networks. Modulating intracellular vesicle transport can have a huge impact on the development of new neurotherapeutic concepts, but only if we can specifically interfere with intracellular transport patterns. Here, we propose to modulate motion of intracellular lipid vesicles in rat cortical neurons based on exogenously bioconjugated and cell internalized superparamagnetic iron oxide nanoparticles (SPIONs) within microengineered magnetic gradients on-chip. Upon application of 6–126 pN on intracellular vesicles in neuronal cells, we explored how the magnetic force stimulus impacts the motion pattern of vesicles at various intracellular locations without modulating the entire cell morphology. Altering vesicle dynamics was quantified using, mean square displacement, a caging diameter and the total traveled distance. We observed a de-acceleration of intercellular vesicle motility, while applying nanomagnetic forces to cultured neurons with SPIONs, which can be explained by a decrease in motility due to opposing magnetic force direction. Ultimately, using nanomagnetic forces inside neurons may permit us to stop the mis-sorting of intracellular organelles, proteins and cell signals, which have been associated with cellular dysfunction. Furthermore, nanomagnetic force applications will allow us to wirelessly guide axons and dendrites by exogenously using permanent magnetic field gradients.
机译:囊泡运输是细胞通信的主要基础机制。即使在完整的神经元网络中,抑制脑细胞中的囊泡运输也会导致神经元信号的阻塞。调节细胞内囊泡运输可能会对新的神经治疗概念的发展产生巨大影响,但前提是我们可以特异性地干扰细胞内运输模式。在这里,我们建议基于芯片上的微工程磁梯度内的外源性生物共轭和细胞内化的超顺磁性氧化铁纳米粒子(SPIONs)调节大鼠皮质神经元中细胞内脂质小泡的运动。在神经细胞中的细胞内囊泡上应用6–126 pN时,我们探索了磁力刺激如何在不调节整个细胞形态的情况下影响细胞内各个位置的囊泡的运动模式。使用均方位移,笼罩直径和总行进距离来量​​化改变的囊泡动力学。我们观察到细胞间囊泡运动力的减缓,同时将纳米磁力施加到带有SPIONs的培养神经元上,这可以解释为由于相反的磁力方向导致的运动力降低。最终,在神经元内部使用纳米磁力可以使我们停止与细胞功能障碍有关的细胞内细胞器,蛋白质和细胞信号的错误分类。此外,纳米磁力的应用将使我们能够通过外源使用永久磁场梯度来无线地引导轴突和树突。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号