首页> 美国卫生研究院文献>other >Quantitative Reflection Imaging for Morphology and Dynamics of Live Aplysia Californica Pedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals
【2h】

Quantitative Reflection Imaging for Morphology and Dynamics of Live Aplysia Californica Pedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals

机译:定量反射成像的形态和动力学的动态海Cali加州脚蹬神经节神经元培养在纳米结构的等离子晶体上。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe a reflection imaging system which consists of a plasmonic crystal, a common laboratory microscope, and bandpass filters for use in the quantitative imaging and in-situ monitoring of live cells and their substrate interactions. Surface plasmon resonance (SPR) provides a highly sensitive method to monitor changes in physicochemical properties occurring at metal-dielectric interfaces. Polyelectrolyte thin films deposited using the layer-by-layer (LBL) self-assembly method provide a reference system to calibrate the reflection contrast changes that occur when the polyelectrolyte film thickness changes, as well as provide insight into the optical responses that originate from the multiple plasmonic features supported by this imaging system. Finite-difference time-domain (FDTD) simulations of the optical responses measured experimentally from the polyelectrolyte reference system are used to provide a calibration of the optical system for subsequent use in quantitative studies investigating live cell dynamics in cultures supported on a plasmonic crystal substrate. Live Aplysia californica pedal ganglion neurons cultured in artificial sea water were used as a model system through which to explore the utility of this plasmonic imaging technique. Here, the morphology of cellular peripheral structures < ~80 nm in thickness were quantitatively analyzed and the dynamics of their trypsin-induced surface detachment visualized. These results illustrate capacities of this system for use in investigations of the dynamics of ultrathin cellular structures within complex bioanalytical environments.
机译:我们描述了一种反射成像系统,该系统由等离子晶体,普通实验室显微镜和带通滤光片组成,用于定量成像和活细胞及其底物相互作用的原位监测。表面等离子体共振(SPR)提供了一种高度灵敏的方法来监视金属-电介质界面处发生的物理化学性质的变化。使用逐层(LBL)自组装方法沉积的聚电解质薄膜提供了一个参考系统,用于校准当聚电解质膜厚度变化时发生的反射对比度变化,并提供对源自薄膜的光学响应的​​洞察力。该成像系统支持多种等离子体特征。从聚电解质参考系统实验测得的光学响应的​​时域有限差分(FDTD)模拟用于提供光学系统的校准,以便随后用于定量研究,以研究等离激元晶体基质上支持的培养物中的活细胞动力学。在人工海水中培养的活海螺加利福尼亚足踏板神经节神经元被用作模型系统,以探索这种等离子体成像技术的实用性。在这里,定量分析厚度小于80 nm的细胞外围结构的形态,并可视化其胰蛋白酶诱导的表面分离的动力学。这些结果说明了该系统用于研究复杂生物分析环境中超薄细胞结构动力学的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号