首页> 美国卫生研究院文献>other >Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium Pseudovibrio sp. FO-BEG1
【2h】

Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium Pseudovibrio sp. FO-BEG1

机译:磷酸盐的限制触发了海洋细菌Pseudovibrio sp沉淀铁的溶解。 FO-BEG1

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigated in several bacterial species, the metabolic interplay between these two nutrients has rarely been considered. In this study we evaluated the impact of phosphate limitation on the iron metabolism of the marine bacterium Pseudovibrio sp. FO-BEG1. We observed that phosphate limitation led to an initial decrease of soluble iron in the culture up to three times higher than under phosphate surplus conditions. Similarly, a decrease in soluble cobalt was more pronounced under phosphate limitation. These data point toward physiological changes induced by phosphate limitation that affect either the cellular surface and therefore the metal adsorption onto it or the cellular metal uptake. We discovered that under phosphate limitation strain FO-BEG1, as well as selected strains of the Roseobacter clade, secreted iron-chelating molecules. This leads to the hypothesis that these bacteria might release such molecules to dissolve iron minerals, such as iron-oxyhydroxide, in order to access the adsorbed phosphate. As the adsorption of phosphate onto iron minerals can significantly decrease phosphate concentrations in the environment, the observed release of iron-chelators might represent an as yet unrecognized link between the biogeochemical cycle of phosphorus and iron, and it suggests another biological function of iron-chelating molecules in addition to metal-scavenging.
机译:磷是所有生物的必需营养素。在细菌中,优先的磷源是磷酸盐,它在海洋的许多区域通常是有限的常量营养素。磷的地球化学循环与其他元素(尤其是铁)的循环紧密相关,因为磷酸盐倾向于吸附到铁矿物质上,例如在有氧海洋环境中形成的氧化铁。尽管已经在几种细菌中研究了对铁或磷酸盐限制的响应,但很少考虑这两种营养素之间的代谢相互作用。在这项研究中,我们评估了磷酸盐限制对海洋细菌Pseudovibrio sp。铁代谢的影响。 FO-BEG1。我们观察到磷酸盐的局限性导致培养物中可溶性铁的初始减少,其最高比在磷酸盐过剩条件下高三倍。同样,在磷酸盐限制下,可溶性钴的减少更为明显。这些数据表明由磷酸盐限制引起的生理变化,该变化影响细胞表面并因此影响金属在其上的吸附或细胞金属的吸收。我们发现,在磷酸盐限制下,FO-BEG1菌株以及迷迭香分支的某些菌株会分泌铁螯合分子。这导致了一个假设,即这些细菌可能释放出这样的分子以溶解铁矿物质,例如羟基氧化铁,以获取所吸附的磷酸盐。由于磷酸盐吸附到铁矿物质上会显着降低环境中的磷酸盐浓度,因此观察到的铁螯合剂释放可能代表了磷和铁的生物地球化学循环之间尚未被认识到的联系,这表明了铁螯合的另一种生物学功能除金属清除分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号