首页> 美国卫生研究院文献>other >Sensitivity and specificity considerations for fMRI encoding decoding and mapping of auditory cortex at ultra-high field
【2h】

Sensitivity and specificity considerations for fMRI encoding decoding and mapping of auditory cortex at ultra-high field

机译:超高视场fMRI编码解码和映射听觉皮层的敏感性和特异性考虑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7 Tesla, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T2* weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T2* weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T2* weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency preference and selectivity for the GE-EPI dataset, but not for the 3D GRASE dataset. Thus, a T2 weighted acquisition is recommended if high specificity in tonotopic maps is required. In conclusion, different fMRI acquisitions were better suited for different analyses. It is therefore critical that any sequence parameter optimization considers the eventual intended fMRI analyses and the nature of the neuroscience questions being asked.
机译:随着技术的飞速发展,超高场功能MRI(fMRI)能够以提高的空间分辨率探索神经元种群活动的相关性。但是,由于fMRI血氧依赖水平(BOLD)造影剂是血管信号,因此fMRI数据的空间特异性最终取决于基础脉管系统的特征。在7 Tesla下,fMRI测量参数确定了大血管和微血管对采集信号的相对贡献。在这里,我们研究了这些参数如何影响相关的高端功能磁共振成像分析,例如人类听觉皮层中体素首选项的编码,解码和亚毫米级映射。具体来说,我们将2D梯度回波(GE)EPI获得的T2 *加权fMRI数据集与3D GRASE获得的主要T2加权数据集进行了比较。我们首先基于两种编码模型研究了解码的准确性,这两种编码模型代表了关于听觉皮层处理的不同假设。这种编码/解码分析得益于T2 *加权采集的大空间覆盖范围和灵敏度,这与两个编码模型的3D GRASE数据集相比,GE-EPI数据集的预测准确性明显更高。 T2 *加权GE-EPI数据集用于编码/解码分析的主要缺点是预测准确性显示出皮质深度依赖性血管偏差。但是,我们建议将跨不同编码模型的预测准确性进行比较,可以用作后处理技术,以挽救GE-EPI皮质深度相关的预测准确性的空间可解释性。其次,我们探索了体素首选项的映射。大型频率偏好图(即tonotopy)在各个数据集中相似,但GE-EPI数据集由于其较大的空间覆盖范围和灵敏度而较为可取。但是,亚毫米层的地形图揭示了GE-EPI数据集而不是3D GRASE数据集在分配的频率偏好和选择性上的偏差。因此,如果需要在局部影像中具有高特异性,建议使用T2加权采集。总之,不同的fMRI采集更适合于不同的分析。因此,至关重要的是,任何序列参数优化都必须考虑最终的预期功能磁共振成像分析和所询问的神经科学问题的性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号