首页> 美国卫生研究院文献>other >Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na+ (K+)/H+ Antiporter Gene (PvNHX1)
【2h】

Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na+ (K+)/H+ Antiporter Gene (PvNHX1)

机译:通过过量表达Vacuolar Na +(K +)/ H +反转运蛋白基因(PvNHX1)增强转基因柳枝Growth的生长性能和耐盐性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Switchgrass (Panicum virgatum L.) has been increasingly recognized as one of the most valuable perennial bioenergy crop. To improve its biomass production, especially under salt stress, we isolated a putative vacuolar Na+ (K+)/H+ antiporter gene from switchgrass and designated as PvNHX1. Subcellular localization revealed that this protein was localized mainly on the vacuole membrane. The PvNHX1 was found to be expressed throughout the entire growth period of switchgrass, exhibited preferentially expressed in the leaf tissue, and highly induced by salt stress. Transgenic switchgrass overexpressing PvNHX1 showed obvious advantages with respect to plant height and leaf development compared to the wild-type (WT) and transgenic control (EV, expressing the empty vector only) plants, suggesting PvNHX1 may serve as a promoter in switchgrass growth and development. Moreover, transgenic switchgrass were more tolerant than control plants with better growth-related phenotypes (higher shoot height, larger stem diameter, longer leaf length, and width) and physiological capacities (increased proline accumulation, reduced malondialdehyde production, preserved cell membrane integrity, etc.) under high salinity stress. Furthermore, the genes related to cell growth, flowering, and potassium transporters in transgenic switchgrass exhibited a different expression profiles when compared to the control plants, indicating a pivotal function of PvNHX1 in cell expansion and K+ homeostasis. Taken together, PvNHX1 is essential for normal plant growth and development, and play an important role in the response to salt stress by improving K+ accumulation. Our data provide a valuable foundation for further researches on the molecular mechanism and physiological roles of NHXs in plants.
机译:柳枝((Panicum virgatum L.)已被公认为最有价值的多年生生物能源作物之一。为了提高其生物量产量,特别是在盐胁迫下,我们从柳枝switch中分离出了假定的液泡Na + (K + )/ H + 反向转运蛋白基因。并指定为PvNHX1。亚细胞定位揭示该蛋白主要定位在液泡膜上。发现PvNHX1在柳枝the的整个生长期表达,优先在叶组织中表达,并被盐胁迫高度诱导。与野生型(WT)和转基因对照(EV,仅表达空载体)植物相比,过表达PvNHX1的转基因柳枝showed在植物高度和叶片发育方面显示出明显的优势,表明PvNHX1可能是柳枝growth生长和发育的启动子。此外,转基因柳枝than比对照植物具有更好的生长相关表型(更高的芽高,更大的茎直径,更长的叶长和宽度)和生理能力(脯氨酸积累增加,丙二醛产生减少,细胞膜完整性得以保持等)的耐受性。 。)在高盐度压力下。此外,与对照植物相比,转基因柳枝cell中与细胞生长,开花和钾转运蛋白有关的基因表现出不同的表达谱,表明PvNHX1在细胞扩增和K + 稳态中具有关键作用。两者合计,PvNHX1对正常植物的生长和发育至关重要,并通过改善K + 积累在盐胁迫响应中发挥重要作用。我们的数据为进一步研究NHXs在植物中的分子机理和生理作用提供了有价值的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号