首页> 美国卫生研究院文献>other >Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models
【2h】

Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models

机译:各种垃圾类型和分解过程中灵活的碳使用效率部分补偿了营养失衡—分析化学计量模型的结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space—expressing litter remaining N as a function of remaining C—rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.
机译:已经开发出涉及微生物过程明确表示的数学模型,以从实验室和现场测量中推断出微生物群落的特性。虽然此方法已用于估算与微生物活性有关的动力学常数,但尚未完全用于推断化学计量特性,例如碳使用效率(CUE)。在此,建立了可分解求解的垃圾碳(C)和氮(N)动力学的质量平衡模型的层次结构,以从垃圾分解过程中测得的C和N含量推断分解剂CUE。在相空间中求解模型,而不是在时间上求解,即将剩余的N表示为剩余的C的函数,因此关注的是分解过程中的化学计量关系,而不是降解动力学。这种方法可得出依赖于CUE和其他微生物特性的明确公式,然后将其视为模型参数并通过非线性回归进行检索。假定CUE是时不变的,或者是作为替代时间的剩余垃圾C的分数的函数。在所有模型中,随着各种垫料类型中垫料氮含量的增加,CUE趋于增加。当考虑到CUE的时间趋势时,CUE在分解较差的N个同窝群体期间会增加,其中分解者最初是N受限的,但富含N的同窝废弃物则可能由于C限制而降低。这些可部分补偿化学计量失衡的灵活CUE模式对于分解剂C:N比率的适度变化具有较强的鲁棒性,并能在较宽的气候梯度范围内保持稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号