首页> 美国卫生研究院文献>other >Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability
【2h】

Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability

机译:在肯尼亚东部半干旱的短季节豆类中探索生态位—应对气候变化的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.] and lablab [Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha−1. An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter production, reaching very high grain yields at high potential sites (3,000 kg ha−1) but being highly susceptible to in-season drought. Lablab seemed to be best adapted to dry environments. Its canopy architecture appeared to be best in compromising between the investment in biomass as a prerequisite to accumulate grain yield by minimizing water loss through soil evaporation and crop transpiration. This lead to grain yields of up to 2,000 kg ha−1 at high potential sites and >1,000 kg ha−1 at low potential sites. The variance of observed and simulated WUE was high and no clear dependency on total rainfall alone was observed for all three short-season grain legumes, highlighting that pattern of water use is also important in determining final WUEbiomass and WUEgrain. Mean WUEgrain was lowest for cowpea (1.5–3.5 kggrain ha−1 mm−1) and highest for lablab (5–7 kggrain ha−1 mm−1) reflecting the high susceptibility to drought of cowpea and the good adaptation to dry environments of lablab. Results highlight that, based on specific morphological, phonological, and physiological characteristics, the three short-season grain legumes follow different strategies to cope with climate variability. The climate-smart site-specific utilization of the three legumes offers promising options to design more resilient and productive farming systems in semi-arid Eastern Kenya.
机译:气候多变性是半干旱农业生态系统中农业生产的主要风险,也是维持全球这些地区5亿人口农业生计的主要挑战。短季节豆类作物具有应对这一挑战的巨大潜力,并有助于设计更具韧性和生产力的耕作制度。然而,谷物豆科植物显示出很大的多样性,并且在生长,发育和资源利用效率上差异很大。选择了三个对比鲜明的短时豆类豆科普通菜豆(Phaseolus vulgaris L.),cow豆(Vigna unguiculata(L.)Walp。)和lablab [Lablab purpureus(L.)Sweet],以评估其在气候变化和气候变化方面的农业潜力。肯尼亚东部半干旱地区Machakos-Makueni断面的变化是通过实测数据[2012/13和2013/14年在肯尼亚Machakos进行的水响应试验]和使用农业生产系统模拟程序(APSIM)进行的模拟数据进行的)。校准并验证了APSIM作物模型,以模拟半干旱环境中短季豆类植物的生长和发育,以水分利用效率(WUE)作为量化生产潜力的指标,适应的主要特征包括早期开花,豆荚和种子结实在极端干旱开始之前,早期物候学和适应性冠层结构允许更多的最佳水分利用和干物质分配到更多地方种子(更高的收获指数)。虽然普通豆遵循相对保守的策略,以尽量减少因作物蒸腾而造成的水分流失,但非常短的发育时间和紧凑的生长习性限制了谷物产量,很少超过1,000 kg ha -1 。该策略的优势是相对稳定的产量,而不受整个Machakos-Makueni样带的作物内降雨或季节长度的影响。相比之下,of豆的生长习性通过快速的地被覆盖和干物质生产使土壤蒸发造成的水分损失最小化,在高潜力地区(3,000 kg ha -1 )达到很高的谷物产量,但极易受到季节性干旱。 Lablab似乎最适合干燥环境。它的树冠结构似乎最能妥善地折衷于对生物质的投资,这是通过最大限度地减少因土壤蒸发和作物蒸腾而造成的水分流失来积累谷物产量的先决条件。这导致高势位处的谷物单产高达2,000 kg ha -1 ,而低势位处的谷物单产> 1,000 kg ha -1 。观察到的和模拟的WUE的方差很大,没有观察到所有三个短季谷物豆类单独依赖于总降雨,这突显了用水模式对于确定最终的WUE生物量和WUEgrain也很重要。 cow豆的平均WUEgrain最低(1.5–3.5 kggrain ha -1 ),而lablab最高(5–7 kggrain ha −1 > mm −1 )反映了cow豆对干旱的高度敏感性以及对Lablab干旱环境的良好适应性。结果表明,根据特定的形态,语音和生理特征,三种短季谷物豆科植物采用不同的策略来应对气候变化。这三种豆科植物的气候智能型特定地点利用为在半干旱的东部肯尼亚设计更具弹性和生产力的农业系统提供了有希望的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号