首页> 美国卫生研究院文献>other >Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide
【2h】

Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide

机译:基于多层氧化石墨烯的透气性蒸气有毒屏障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is tremendous interest in graphene-based membranes as protective molecular barriers or molecular sieves for separation technologies. Graphene oxide (GO) films in the dry state are known to be effective barriers for molecular transport and to expand in the presence of moisture to create enlarged intersheet gallery spaces that allow rapid water permeation. Here we explore an application for GO membranes as water-breathable barrier layers for personal protective equipment, which are designed to allow outward perspiration while protecting the wearer from chemical toxicants or biochemical agents in the local environment. A device was developed to measure permeation rates of small-molecular toxicants in the presence of counter-current water flow simulating active perspiration. The technique was applied to trichloroethylene (TCE) and benzene, which are important environmental toxicants, and ethanol as a limiting case to model very small, highly water-soluble organic molecules. Submicron GO membranes are shown to be effective TCE barriers, both in the presence and absence of simulated perspiration flux, and to outperform current barrier technologies. A molecular transport model is developed, which suggests the limited toxicant back-permeation observed occurs not by diffusion against the convective perspiration flow in hydrophobic channels, but rather through oxidized domains where hydrogen-bonding produces a near-stagnant water phase. Benzene and ethanol permeation fluxes are higher than those for TCE, likely reflecting the effects of higher water solubility and smaller minimum molecular dimension. Overall, GO films have high water breathability relative to competing technologies and are known to exclude most classes of target toxicants, including particles, bacteria, viruses, and macromolecules. The present results show good barrier performance for some very small-molecule species, but not others, with permeation being favored by high water solubility and small minimum molecular dimension.
机译:石墨烯基膜作为分离技术的保护性分子屏障或分子筛,引起了人们极大的兴趣。已知处于干燥状态的氧化石墨烯(GO)膜是有效的分子传输屏障,并且在湿气存在下会膨胀,从而形成扩大的片间通道空间,从而使水快速渗透。在这里,我们探索了GO膜作为个人防护设备的透水透气阻隔层的应用,该膜旨在允许向外排汗,同时保护穿戴者免受当地环境中的化学毒物或生化试剂的伤害。开发了一种在逆流水流模拟主动出汗的情况下测量小分子毒物渗透率的装置。该技术已应用于三氯乙烯(TCE)和苯(它们是重要的环境毒物)和乙醇作为模拟非常小的高度水溶性有机分子的限制案例。在存在和不存在模拟排汗通量的情况下,亚微米GO膜均被证明是有效的TCE屏障,其性能优于目前的屏障技术。建立了分子运输模型,该模型表明观察到的有限的毒物向后渗透不是通过在疏水通道中对流汗水的扩散而发生的,而是通过氢键产生近乎停滞的水相的氧化域发生的。苯和乙醇的渗透通量高于三氯乙烯的通量,这可能反映了较高的水溶性和较小的最小分子尺寸的影响。总体而言,相对于竞争技术,GO薄膜具有较高的水透气性,并且已知其可排除大多数类别的目标毒物,包括颗粒,细菌,病毒和大分子。目前的结果显示出对某些非常小分子的物质具有良好的阻隔性能,但对于其他分子则没有,渗透性因高水溶性和较小的最小分子尺寸而受到青睐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号