首页> 美国卫生研究院文献>other >Cooperative RNA Folding Under Cellular Conditions Arises From Both Tertiary Structure Stabilization and Secondary Structure Destabilization
【2h】

Cooperative RNA Folding Under Cellular Conditions Arises From Both Tertiary Structure Stabilization and Secondary Structure Destabilization

机译:三级结构稳定和二级结构不稳定同时引起细胞条件下的合作RNA折叠。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

RNA folding has been studied extensively in vitro, typically under dilute solution conditions and abiologically high salt concentrations of 1 M Na+ or 10 mM Mg2+. The cellular environment is very different, with 20–40% crowding and only 10–40 mM Na+, 140 mM K+ and 0.5–2.0 mM Mg2+. As such, RNA structures and functions can be radically altered under cellular conditions. We previously reported that tRNAphe secondary and tertiary structures unfold together in a cooperative two-state fashion under crowded in vivo-like ionic conditions, but in a non-cooperative multi-state fashion under dilute in vitro ionic conditions unless in non-physiologically high concentrations of Mg2+. The mechanistic basis behind these effects remains unclear, however. To address the mechanism that drives RNA folding cooperativity, we probe effects of cellular conditions on structures and stabilities of individual secondary structure fragments comprising the full-length RNA. We elucidate effects of a diverse set of crowders on tRNA secondary structural fragments and full-length tRNA at three levels: at the nucleotide level by temperature-dependent in-line probing (ILP), at the tertiary structure level by small angle X-ray scattering (SAXS), and at the global level by thermal denaturation. We conclude that cooperative RNA folding is induced by two overlapping mechanisms: increased stability and compaction of tertiary structure through effects of Mg2+, and decreased stability of certain secondary structure elements through effects of molecular crowders. These findings reveal that despite having very different chemical makeups RNA and protein can both have weak secondary structures in vivo leading to cooperative folding.
机译:已经对RNA折叠进行了广泛的体外研究,通常是在稀溶液条件下以及在非生物的高盐浓度下(1 M Na + 或10 mM Mg 2 + )。细胞环境非常不同,拥挤率为20–40%,Na + 仅10–40 mM,K + 140 mM Kg和0.5–2.0 mM Mg 2仅2 + 。这样,RNA结构和功能可以在细胞条件下发生根本改变。我们以前曾报道过,tRNA phe 二级和三级结构在拥挤的体内类似离子条件下以合作的两种状态形式一起展开,但是在稀的体外离子状态下以非合作的多状态形式展开。除非处于非生理性高浓度的Mg 2 + 。但是,这些作用背后的机理基础仍不清楚。为了解决驱动RNA折叠协同作用的机制,我们探讨了细胞条件对包含全长RNA的单个二级结构片段的结构和稳定性的影响。我们阐明了三种不同的拥挤剂对tRNA二级结构片段和全长tRNA的影响:在三个核苷酸水平上通过温度依赖性在线探测(ILP)在核苷酸水平上,在三级结构水平上通过小角度X射线分析散射(SAXS),并通过热变性在全局范围内。我们得出结论,合作RNA折叠是由两种重叠机制诱导的:通过Mg 2 + 的作用提高了三级结构的稳定性和紧密性,而通过分子拥挤剂的作用降低了某些二级结构元素的稳定性。这些发现表明,尽管化学组成非常不同,RNA和蛋白质在体内都可能具有较弱的二级结构,从而导致协同折叠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号