首页> 美国卫生研究院文献>other >A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response
【2h】

A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response

机译:植物根离子和水的运输的综合生物物理模型。 I.阐明内胚层屏障在盐胁迫反应中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a detailed and comprehensive mathematical model of active and passive ion and water transport in plant roots. Two key features are the explicit consideration of the separate, but interconnected, apoplastic, and symplastic transport pathways for ions and water, and the inclusion of both active and passive ion transport mechanisms. The model is used to investigate the respective roles of the endodermal Casparian strip and suberin lamellae in the salt stress response of plant roots. While it is thought that these barriers influence different transport pathways, it has proven difficult to distinguish their separate functions experimentally. In particular, the specific role of the suberin lamellae has been unclear. A key finding based on our simulations was that the Casparian strip is essential in preventing excessive uptake of Na+ into the plant via apoplastic bypass, with a barrier efficiency that is reflected by a sharp gradient in the steady-state radial distribution of apoplastic Na+ across the barrier. Even more significantly, this function cannot be replaced by the action of membrane transporters. The simulations also demonstrated that the positive effect of the Casparian strip of controlling Na+ uptake, was somewhat offset by its contribution to the osmotic stress component: a more effective barrier increased the detrimental osmotic stress effect. In contrast, the suberin lamellae were found to play a relatively minor, even non-essential, role in the overall response to salt stress, with the presence of the suberin lamellae resulting in only a slight reduction in Na+ uptake. However, perhaps more significantly, the simulations identified a possible role of suberin lamellae in reducing plant energy requirements by acting as a physical barrier to preventing the passive leakage of Na+ into endodermal cells. The model results suggest that more and particular experimental attention should be paid to the properties of the Casparian strip when assessing the salt tolerance of different plant varieties and species. Indeed, the Casparian strip appears to be a more promising target for plant breeding and plant genetic engineering efforts than the suberin lamellae for the goal of improving salt tolerance.
机译:在本文中,我们提出了一个详细而全面的数学模型,该模型在植物根部主动和被动地进行离子和水的运输。两个关键特征是明确考虑离子和水的分开但相互联系的质外和共生的传输途径,以及包含主动和被动离子传输机制。该模型用于研究内胚层里海带和木栓质薄片在植物根系的盐胁迫响应中的各自作用。尽管人们认为这些障碍会影响不同的运输途径,但事实证明很难通过实验区分它们各自的功能。尤其是,尚不知道木脂蛋白薄片的具体作用。根据我们的模拟得出的一个关键发现是,里海带对防止通过质外性旁路过量吸收Na + 进入植物至关重要,而稳定状态下陡峭的坡度反映了屏障效率。 Na + 穿过障碍物的径向分布更重要的是,该功能不能被膜转运蛋白的作用所取代。模拟还表明,里氏带控制Na + 吸收的积极作用在一定程度上被其对渗透胁迫成分的贡献所抵消:更有效的屏障增加了有害的渗透胁迫作用。相比之下,发现木脂蛋白片在盐胁迫的总体响应中起相对较小的作用,甚至是非必需的,而木脂蛋白片的存在仅导致Na + 吸收。然而,也许更重要的是,该模拟通过阻止物理性屏障阻止Na + 被动泄漏到内胚层细胞中,从而降低了木栓质薄片在降低植物能量需求方面的可能作用。模型结果表明,在评估不同植物品种和物种的耐盐性时,应特别注意里海带的性质。确实,为了提高耐盐性,里巴林带似乎比木栓质薄片更能成为植物育种和植物基因工程研究的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号