首页> 美国卫生研究院文献>other >Multiscale mechanics of the cervical facet capsular ligament with particular emphasis on anomalous fiber realignment prior to tissue failure
【2h】

Multiscale mechanics of the cervical facet capsular ligament with particular emphasis on anomalous fiber realignment prior to tissue failure

机译:子宫颈小囊囊韧带的多尺度力学特别着重于组织衰竭前纤维异常排列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The facet capsular ligaments encapsulate the bilateral spinal facet joints and are common sources of painful injury due to afferent innervation. These ligaments exhibit architectural complexity, which is suspected to contribute to the experimentally observed lack of co-localization between macroscopic strain and microstructural tissue damage. The heterogeneous and multiscale nature of this ligament, combined with challenges in experimentally measuring its microscale mechanics, hinders the ability to understand sensory mechanisms under normal or injurious loading. Therefore, image-based, subject-specific, multiscale finite-element models were constructed to predict the mechanical responses of the human cervical facet capsular ligament under uniaxial tensile stretch. The models precisely simulated the force-displacement responses for all samples (R2=0.99±0.01) and showed promise in predicting the magnitude and location of peak regional strains at two different displacements. Yet, there was a loss of agreement between the model and experiment in terms of fiber organization at large tissue stretch, possibly due to a lack of accounting for tissue failure. The mean fiber stretch ratio predicted by the models was found to be significantly higher in regions that exhibited anomalous fiber realignment experimentally than in regions with normal realignment (p<0.002). The development of microstructural abnormalities was associated with the predicted fiber-level stretch (p<0.009), but not with the elemental maximum principal stress or maximum principal strain by logistic regression. The multiscale models elucidate a potential mechanical basis for predicting injury-prone tissue domains and for defining the relationships between macroscopic ligament stretch and microscale pathophysiology in the subfailure regime.
机译:小关节囊韧带囊括了双侧脊椎小关节,并且是由于传入神经支配而造成疼痛伤害的常见原因。这些韧带表现出结构上的复杂性,这被怀疑是导致实验观察到的宏观应变与微结构组织损伤之间缺乏共定位的原因。该韧带的异质性和多尺度性质,再加上实验测量其微尺度力学的挑战,阻碍了在正常或有害负荷下理解感觉机制的能力。因此,基于图像的,特定于对象的,多尺度有限元模型被构建,以预测在单轴拉伸拉伸下人宫颈小关节囊韧带的机械响应。该模型精确模拟了所有样品的力-位移响应(R 2 = 0.99±0.01),并显示出预测两个不同位移处的峰值区域应变的大小和位置的希望。然而,在大型组织拉伸时,模型和实验之间在纤维组织方面的一致性有所损失,这可能是由于缺乏对组织衰竭的解释。通过模型预测的平均纤维拉伸比发现,在实验上表现出异常纤维重新排列的区域比具有正常重新排列的区域显着更高(p <0.002)。微观结构异常的发展与预测的纤维水平拉伸有关(p <0.009),但与逻辑最大回归的元素最大主应力或最大主应变无关。多尺度模型阐明了潜在的机械基础,可用于预测易受伤组织区域以及在亚失败状态下定义宏观韧带拉伸与微观病理生理学之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号