首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Multiscale modelling of the human lumbar facet capsular ligament: analysing spinal motion from the joint to the neurons
【2h】

Multiscale modelling of the human lumbar facet capsular ligament: analysing spinal motion from the joint to the neurons

机译:人腰椎小关节囊韧带的多尺度建模:分析从关节到神经元的脊柱运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to its high level of innervation, the lumbar facet capsular ligament (FCL) is suspected to play a role in low back pain (LBP). The nociceptors in the lumbar FCL may experience excessive deformation and generate pain signals. As such, understanding the mechanical behaviour of the FCL, as well as that of its underlying nerves, is critical if one hopes to understand its role in LBP. In this work, we constructed a multiscale structure-based finite-element (FE) model of a lumbar FCL on a spinal motion segment undergoing physiological motions of flexion, extension, ipsilateral and contralateral bending, and ipsilateral axial rotation. Our FE model was created for a generic FCL geometry by morphing a previously imaged FCL anatomy onto an existing generic motion segment model. The fibre organization of the FCL in our models was subject-specific based on previous analysis of six dissected specimens. The fibre structures from those specimens were mapped onto the FCL geometry on the motion segment. A motion segment model was used to determine vertebral kinematics under specified spinal loading conditions, providing boundary conditions for the FCL-only multiscale FE model. The solution of the FE model then provided detailed stress and strain fields within the tissue. Lastly, we used this computed strain field and our previous studies of deformation of nerves embedded in fibrous networks during simple deformations (e.g. uniaxial stretch, shear) to estimate the nerve deformation based on the local tissue strain and fibre alignment. Our results show that extension and ipsilateral bending result in largest strains of the lumbar FCL, while contralateral bending and flexion experience lowest strain values. Similar to strain trends, we calculated that the stretch of the microtubules of the nerves, as well as the forces exerted on the nerves' membrane are maximal for extension and ipsilateral bending, but the location within the FCL of peak microtubule stretch differed from that of peak membrane force.
机译:由于其较高的神经支配水平,腰椎小囊韧带(FCL)被怀疑在下腰痛(LBP)中起作用。腰部FCL中的伤害感受器可能会过度变形并产生疼痛信号。因此,如果希望了解FCL及其下层神经的机械行为,则至关重要。在这项工作中,我们构建了一个在腰椎FCL上进行屈曲,伸展,同侧和对侧弯曲以及同侧轴向旋转的生理运动的腰椎FCL的基于多尺度结构的有限元(FE)模型。我们的FE模型是通过将先前成像的FCL解剖体变形到现有的通用运动段模型上而为通用FCL几何体创建的。基于先前对六个解剖标本的分析,我们模型中FCL的纤维组织是特定于对象的。这些标本的纤维结构被映射到运动段的FCL几何形状上。运动段模型用于确定指定脊柱负荷条件下的椎体运动学,为仅FCL的多尺度有限元模型提供边界条件。然后,有限元模型的解提供了组织内详细的应力和应变场。最后,我们使用此计算出的应变场以及我们先前对简单网络变形(例如单轴拉伸,剪切)过程中嵌入神经网络的神经变形的研究来基于局部组织应变和纤维排列来估计神经变形。我们的结果表明,伸展和同侧弯曲导致腰椎整形的最大应变,而对侧弯曲和屈曲的应变值最低。与应变趋势相似,我们计算出,神经微管的伸展以及施加在神经膜上的力对于伸展和同侧弯曲最大,但是峰值微管伸展在FCL内的位置与膜峰值力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号