首页> 美国卫生研究院文献>other >The Potential for Intercellular Mechanical Interaction – Simulations of Single Chondrocyte Versus Anatomically Based Distribution
【2h】

The Potential for Intercellular Mechanical Interaction – Simulations of Single Chondrocyte Versus Anatomically Based Distribution

机译:细胞间机械相互作用的潜力–模拟单个软骨细胞与基于解剖的分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix (ECM) construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macro-scale mechanics of cartilage when higher cell concentrations are considered, as may be the case in many instances. Hence, the goal of this study was to compare cell level response of single and eleven cell biphasic finite element (FE) models, where the latter provided an anatomically based cellular distribution representative of the actual number of cells for a commonly used 100 μm edge cubic representative volume in the middle zone of cartilage. Single cell representations incorporated a centered single cell model and eleven location corrected single cell models; the latter to delineate the role of cell placement in the representative volume element. A stress relaxation test at 10% compressive strain was adopted for all simulations. During transient response, volume averaged chondrocyte mechanics demonstrated marked differences (up to 60% and typically greater than 10%) for the centered single versus the eleven cell models, yet steady-state loading was similar. Cell location played a marked role, due to inhomogeneity of the displacement and fluid pressure fields at the macroscopic scale. When the single cell representation was corrected for cell location, the transient response was consistent while steady-state differences on the order of 1–4% were realized, which may be attributed to intercellular mechanical interactions. Anatomical representations of the superficial and deep zones, where cells reside in close proximity, may exhibit greater intercellular interactions, but these have yet to be explored.
机译:通常使用嵌入细胞外基质(ECM)构建体中的单细胞模型进行软骨细胞力学以及一般细胞力学的计算研究。当考虑到较高的细胞浓度时,单个细胞微观结构模型的假设可能无法捕获细胞间的相互作用或无法准确反映软骨的宏观机制,在许多情况下可能就是这种情况。因此,本研究的目的是比较单细胞和11个细胞双相有限元(FE)模型的细胞水平响应,其中后者提供了一个基于解剖学的细胞分布,代表了常用100μm边立方的实际细胞数软骨中部的代表性体积。单细胞表示结合了居中的单细胞模型和十一个位置校正的单细胞模型;后者描述了细胞在代表性体积元素中的位置。所有模拟均采用在10%压缩应变下的应力松弛测试。在短暂反应期间,体积平均的软骨细胞力学表现出居中的单细胞模型与11个细胞模型的显着差异(最大60%,通常大于10%),但稳态负荷相似。由于宏观尺度上位移和流体压力场的不均匀性,细胞的位置起了显著作用。当对单个细胞的表达进行细胞位置校正时,瞬态响应是一致的,而稳态差异约为1-4%,这可能归因于细胞间的机械相互作用。浅层和深层区域的解剖学表现(细胞紧密相邻)可能表现出更大的细胞间相互作用,但是这些尚未被探索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号