首页> 美国卫生研究院文献>other >The Mechanism of Nitrogenase H2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects
【2h】

The Mechanism of Nitrogenase H2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

机译:介导的电催化和H / D同位素效应探测金属氢化物质子化制氢酶形成H2的机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitrogenase catalyzes the reduction of dinitrogen (N2) to two ammonia (NH3) at its active site FeMo-cofactor through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides to make H2. A competing reaction is the protonation of the hydride [Fe-H-Fe] to make H2. The overall nitrogenase rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein allowing examination of the mechanism of H2 formation by the metal-hydride protonation reaction. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, was found to change linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate limiting step of H2 formation. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the S-H+ bond breaks and H+ attacks the Fe-hydride, and explains the observed H/D isotope effect. This study not only reveals the nitrogenase mechanism of H2 formation by hydride protonation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.
机译:固氮酶通过一种涉及还原性消除两个[Fe-H-Fe]桥接氢化物以生成H2的机制,在其活性位点FeMo-辅因子上将二氮(N2)还原为两个氨(NH3)。竞争性反应是氢化物[Fe-H-Fe]的质子化以生成H2。总体固氮酶限速步骤与铁蛋白从ATP驱动的电子传递有关,从而排除了对底物还原步骤进行同位素效应的测量。在这里,我们使用介导的生物电催化来驱动电子传递到MoFe蛋白,从而允许通过金属氢化物质子化反应检查H2形成的机理。发现H2O和D2O混合物中的催化电流比率(质子储备)随D2O / H2O比率线性变化,表明单个H / D参与了H2形成的限速步骤。动力学模型,以及改变电子/质子传递速率并使用不同底物的测量,揭示了在这些条件下的限速步骤是H2的形成反应。通过取代附近的氨基酸或将分离的FeMo辅因子转移到不同的肽基质中来改变MoFe蛋白质中活性位FeMo辅因子周围的化学环境,改变了净同位素效应,但质子库图保持线性,与不变的限速步骤。密度泛函理论预测了H2形成的过渡态,其中S-H + 键断裂而H + 侵蚀铁氢化物,并解释了观察到的H / D同位素效应。这项研究不仅揭示了氢化物质子化形成H2的固氮酶机理,而且还阐明了可用于其他酶和仿生复合物的机理研究策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号