首页> 美国卫生研究院文献>other >Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling
【2h】

Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling

机译:压缩屈曲形成的机械组装3D微观结构的振动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational microplatforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behaviour (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behaviour is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational microplatforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.
机译:依靠结构振动的微机电系统(MEMS)具有许多重要的应用,从振荡器和致动器到能量采集器和用于测量机械性能的车辆。然而,常规的MEMS主要利用二维(2D)振动模式,从而强加了3D设计中不存在的某些限制(例如,多方向能量收集)。通过可控压缩屈曲技术组装的3D振动微平台是有前途的,因为它们具有复杂的3D架构,并且能够通过使柔软的弹性体基底变形来可逆地更改其尺寸来调整其振动行为(例如,固有频率和模式)。清楚了解这种应变相关的振动行为对于其实际应用至关重要。在这里,我们通过分析建模,有限元分析(FEA)和实验对这种3D介观结构的线性和非线性振动进行研究。获得了弯曲带的振动模式和线性固有频率的解析解,表明随着静态挠度幅度的增加,模式会发生变化。该模型还产生了线性固有频率的缩放定律,该定律可以扩展到一般的复杂3D几何形状,如FEA和实验所验证的那样。在非线性振动方面,有限元分析表明,增加外部载荷的幅度代表了一种提高带宽的有效手段。结果还发现,随着3D结构的静态偏转幅度增加,振动的非线性度降低。例如,开发的分析模型可用于开发新的3D振动微平台,从而能够同时测量薄膜和生物材料的各种机械性能(密度,模量,粘度等)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号