首页> 美国卫生研究院文献>other >Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations
【2h】

Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations

机译:量子力学/分子机械自由能模拟对大豆脂氧合酶中质子耦合电子转移的基本见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C—O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C—O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ~80 and ~700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C—O distance for the reactant is found to be ~0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C—O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ~100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C—O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.
机译:大豆脂氧合酶催化的质子偶联电子转移(PCET)反应已成为了解酶中氢隧穿的原型。在此,利用混合量子力学/分子力学(QM / MM)自由能模拟研究了该PCET反应。计算自由能表面是质子供体-受体(CO)距离和质子坐标的函数,平均力的势是CO距离的函数,固有地包括非谐性。仿真结果用于计算野生型酶(WT)和L546A / L754A双突变体(DM)的动力学同位素效应,在实验中分别测得它们为〜80和〜700。发现PCET反应对于WT是放热的,而对于DM则是微内吸的,并且发现反应物的平衡C–O距离对于DM比WT大〜0.2Å。 DM的较大平衡距离主要是由于其较高的动力学同位素效应,这主要是由于在扩展的结合腔中最佳的底物结合较少。计算出的平均力势在较短的C-O距离上是不谐和的,并且相对较软,从而可以对有效的氢隧穿所需的较短距离进行有效的热采样。在促进质子转移的方向上,转移氢处的主要局部静电场约为100 MV / cm,并且随着CO距离的减小而急剧增加。这些模拟表明,总体蛋白质环境对于质子转移对齐的活性底物构象的构象采样很重要,但是PCET反应主要受局部静电效应的影响,局部静电效应促进有效氢隧穿所需的较短质子供体-受体距离的构象采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号