首页> 美国卫生研究院文献>other >Examining the use of USEPA’s Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion
【2h】

Examining the use of USEPA’s Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion

机译:检查USEPA的通用衰减因子在确定地下水入侵筛查水平中的用途

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A value of 0.001 is recommended by the United States Environmental Protection Agency (USEPA) for its groundwater-to-indoor air Generic Attenuation Factor (GAFG), used in assessing potential vapor intrusion (VI) impacts to indoor air, given measured groundwater concentrations of volatile chemicals of concern (e.g., chlorinated solvents). The GAFG can, in turn, be used for developing groundwater screening levels for VI given target indoor air quality screening levels. In this study, we examine the validity and applicability of the GAFG both for predicting indoor air impacts and for determining groundwater screening levels. This is done using both analysis of published data and screening model calculations. Among the 774 total paired groundwater-indoor air measurements in the USEPA’s VI database (which were used by that agency to generate the GAFG) we found that there are 427 pairs for which a single groundwater measurement or interpolated value was applied to multiple buildings. In one case, up to 73 buildings were associated with a single interpolated groundwater value and in another case up to 15 buildings were associated with a single groundwater measurement (i.e, that the indoor air contaminant concentrations in all of the associated buildings were influenced by the concentration determined at a single point). In more than 70% of the cases (390 of 536 paired measurements in which horizontal building-monitoring well distance was recorded) the monitoring wells were located more than 30 meters (and some up to over 200 meters) from the associated buildings. In a few cases, the measurements in the database even improbably implied that soil gas contaminant concentrations increased, rather than decreased, in an upward direction from a contaminant source to a foundation slab. Such observations indicate problematic source characterization within the dataset used to generate the GAFG, and some indicate the possibility of a significant influence of a preferential contaminant pathway. While the inherent value of the USEPA database itself is not being questioned here, the above facts raise the very real possibility that the recommended groundwater attenuation factors are being influenced by variables or conditions that have not thus far been fully accounted for. In addition, the predicted groundwater attenuation factors often fall far beyond the upper limits of predictions from mathematical models of VI, ranging from screening models to detailed computational fluid dynamic models. All these models are based on the same fundamental conceptual site model, involving a vadose zone vapor transport pathway starting at an underlying uniform groundwater source and leading to the foundation of a building of concern. According to the analysis presented here, we believe that for scenarios for which such a “traditional” VI pathway is appropriate, 10−4 is a more appropriately conservative generic groundwater to indoor air attenuation factor than is the EPA-recommended 10−3. This is based both on the statistical analysis of USEPA’s VI database, as well as the traditional mathematical models of VI. This result has been validated by comparison with results from some well documented field studies.
机译:美国环境保护局(USEPA)建议将其地下水对室内空气的总衰减因子(GAFG)的值设为0.001,在给定测量的地下水浓度为5%的情况下,用于评估对室内空气的潜在蒸汽入侵(VI)影响。所关注的挥发性化学物质(例如,氯化溶剂)。反过来,根据目标室内空气质量筛查水平,GAFG可用于为VI制定地下水筛查水平。在这项研究中,我们检查了GAFG在预测室内空气影响和确定地下水筛查水平方面的有效性和适用性。这是通过使用已发布数据的分析和筛选模型计算来完成的。在USEPA的VI数据库(该机构用于生成GAFG)中,总共有774对地下水-室内空气配对测量,我们发现有427对配对将单个地下水测量或内插值应用于多个建筑物。在一种情况下,多达73座建筑物与一个内插的地下水值相关联,在另一种情况下,多达15座建筑物与一个内插的地下水强度相关联(即,所有关联建筑物中的室内空气污染物浓度均受地下水影响浓度在一个点确定)。在超过70%的情况下(记录了536个配对测量值中的390个记录了水平建筑物监控井距离),监控井位于距相关建筑物30米以上(有些甚至超过200米)的位置。在少数情况下,数据库中的测量结果甚至不可能暗示从污染物源到地基板的土壤气体污染物浓度沿向上的方向增加而不是减小。这些观察结果表明,用于生成GAFG的数据集中的来源表征存在问题,有的表明有可能对优先污染物途径产生重大影响。尽管这里没有质疑USEPA数据库本身的内在价值,但上述事实确实提出了非常现实的可能性,即建议的地下水衰减因子受到到目前为止尚未充分考虑的变量或条件的影响。此外,从筛选模型到详细的计算流体动力学模型,预测的地下水衰减因子通常远远超出VI数学模型预测的上限。所有这些模型都基于相同的基本概念性场所模型,涉及渗流带蒸气传输路径,该路径始于潜在的统一地下水源,并引起了人们关注的建筑物的基础。根据此处提出的分析,我们认为对于适合这种“传统” VI途径的场景,与EPA相比,10 −4 是更合适的保守地下水对室内空气衰减因子-建议10 −3 。这既基于USEPA VI数据库的统计分析,又基于VI的传统数学模型。通过与一些有据可查的现场研究的结果进行比较,已验证了该结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号