首页> 美国卫生研究院文献>ACS Omega >Ultrathin Metallic Nanowire-Based Architectures asHigh-Performing Electrocatalysts
【2h】

Ultrathin Metallic Nanowire-Based Architectures asHigh-Performing Electrocatalysts

机译:基于超薄金属纳米线的架构高性能电催化剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fuel cells (FCs) convert chemical energy into electricity through electrochemical reactions. They maintain desirable functional advantages that render them as attractive candidates for renewable energy alternatives. However, the high cost and general scarcity of conventional FC catalysts largely limit the ubiquitous application of this device configuration. For example, under current consumption requirements, there is an insufficient global reserve of Pt to provide for the needs of an effective FC for every car produced. Therefore, it is absolutely necessary in the future to replace Pt either completely or in part with far more plentiful, abundant, cheaper, and potentially less toxic first row transition metals, because the high cost-to-benefit ratio of conventional catalysts is and will continue to be a major limiting factor preventing mass commercialization. We and other groups have explored a number of nanowire-based catalytic architectures, which are either Pt-free or with reduced Pt content, as an energy efficient solution with improved performance metrics versus conventional, currently commercially available Pt nanoparticlesthat are already well established in the community. Specifically,in this Perspective, we highlight strategies aimed at the rationalmodification of not only the physical structure but also the chemicalcomposition as a means of developing superior electrocatalysts fora number of small-molecule-based anodic oxidation and cathodic reductionreactions, which underlie the overall FC behavior. In particular,we focus on efforts to precisely, synergistically, and simultaneouslytune not only the size, morphology, architectural motif, surface chemistry,and chemical composition of the as-generated catalysts but also thenature of the underlying support so as to controllably improve performancemetrics of the hydrogen oxidation reaction, the methanol oxidationreaction, the ethanol oxidation reaction, and the formic acid oxidationreaction, in addition to the oxygen reduction reaction.
机译:燃料电池(FC)通过电化学反应将化学能转化为电能。它们保持了理想的功能优势,使其成为可再生能源替代方案的有吸引力的候选者。然而,常规FC催化剂的高成本和普遍缺乏在很大程度上限制了该装置构造的普遍应用。例如,根据当前的消耗需求,Pt的全球储备不足,无法满足每辆生产的汽车的有效FC需求。因此,将来绝对有必要用更大量,更丰富,更便宜且毒性更低的第一排​​过渡金属完全或部分替代Pt,因为传统催化剂的高成本效益比是现在和将来。仍然是阻止大规模商业化的主要限制因素。我们和其他小组已经探索了许多基于纳米线的催化体系结构,这些体系结构不含Pt或Pt含量降低,作为一种能源效率高的解决方案,其性能指标优于传统的当前市售Pt纳米颗粒在社区中已经很成熟。特别,在此观点中,我们重点介绍了针对理性的策略不仅改变物理结构,而且改变化学组合物作为开发高级电催化剂的手段多种基于小分子的阳极氧化和阴极还原反应,这是整体FC行为的基础。特别是,我们专注于精确,协同和同时进行的工作不仅要调整尺寸,形态,建筑图案,表面化学,生成的催化剂的化学组成以及基础支持的性质,以便可控地提高性能氢氧化反应,甲醇氧化的指标反应,乙醇氧化反应和甲酸氧化反应,除氧还原反应外。

著录项

  • 期刊名称 ACS Omega
  • 作者

    Luyao Li; Stanislaus S. Wong; *;

  • 作者单位
  • 年(卷),期 2018(3),3
  • 年度 2018
  • 页码 3294–3313
  • 总页数 20
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号