首页> 美国卫生研究院文献>other >Transport properties and size exclusion effects in wide-pore superficially porous particles
【2h】

Transport properties and size exclusion effects in wide-pore superficially porous particles

机译:宽孔表面多孔颗粒的传输性质和尺寸排阻效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effects of hydrodynamic radius on the transport of solute molecules in packed beds of wide-pore superficially porous particles (SPP) are studied using pore-scale simulation. The free molecular diffusion rate varies with radius through the Stokes-Einstein relation. Lattice Boltzmann and Langevin methods are used to model fluid motion and the transport of an ensemble of solute molecules in the fluid, providing statistics on solute concentration, flux, molecule age and residence time, as a function of depth in the SPP. Intraparticle effective diffusion and bed dispersion coefficients are calculated and correlated with the hydrodynamic radius and accessible porosity.The relative importance of convection and diffusion are found to depend on the molecule (tracer) size through the diffusion rate, and convection effects are more significant for larger, slower-diffusing molecules. When larger molecules are utilized, the intraparticle concentration is reduced in proportion to the local particle porosity, leading to a natural definition of the accessible porosity used in size exclusion chromatography (SEC). Although the pore shape is complex, the SEC constant K can be calculated directly from simulation. Simulation demonstrates that the effective diffusion coefficient is elevated near the particle hull, which is largely open to interstitial flow, and decreases with depth into the particle. All molecules studied here have transport access to the entire particle depth, although the accessible volume at a given depth depends on their size. The first passage time into the particle is well predicted by the diffusion rate, but residence time is influenced by convection, shortening the average visit duration. These results are of interest in “perfusion” chromatography where convection is thought to increase separation efficiency for large biomolecules.
机译:利用孔隙尺度模拟研究了流体动力学半径对溶质分子在宽孔表面多孔颗粒(SPP)填充床中迁移的影响。自由分子扩散速率通过斯托克斯-爱因斯坦关系随半径而变化。格子Boltzmann和Langevin方法用于对流体运动和溶质分子在流体中的迁移进行建模,提供溶质浓度,通量,分子寿命和停留时间随SPP深度的变化的统计数据。计算了颗粒内有效扩散系数和床扩散系数,并将其与流体动力学半径和可达到的孔隙率相关联。对流和扩散的相对重要性取决于扩散速率取决于分子(示踪剂)的大小,对流效应对较大的粒子更重要,扩散速度较慢的分子。当使用较大的分子时,颗粒内浓度与局部颗粒孔隙率成比例降低,从而自然确定了尺寸排阻色谱法(SEC)中使用的可达孔隙率。尽管孔的形状很复杂,但SEC常数K可以直接从模拟中计算出来。仿真表明,有效的扩散系数在粒子壳附近有所提高,在很大程度上对间隙流开放,并随着进入粒子的深度而减小。尽管在给定深度下可到达的体积取决于其大小,但此处研究的所有分子都具有到达整个粒子深度的运输通道。扩散速率可以很好地预测粒子第一次通过的时间,但是对流会影响停留时间,从而缩短了平均访问时间。这些结果在“对流”色谱中很有用,在对流色谱中,对流被认为可以提高大生物分子的分离效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号