首页> 美国卫生研究院文献>other >SUN-TO-EARTH MHD SIMULATION OF THE 14 JULY 2000 BASTILLE DAY ERUPTION
【2h】

SUN-TO-EARTH MHD SIMULATION OF THE 14 JULY 2000 BASTILLE DAY ERUPTION

机译:2000年7月14日巴士底日喷发的日地MHD模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 “Bastille Day” eruption, which produced a very strong geomagnetic storm. After constructing a “thermodynamic” MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption’s source region and initiate the eruption by boundary flows. More than 1033 ergs of magnetic energy are released in the eruption within a few minutes, driving a flare, an EUV wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s−1, close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic-equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hours later and ≈15° too far to the North, with field strengths that are too weak by a factor of ≈1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic-field concentrations as it passes 1 AU. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.
机译:太阳爆发是地球空间天气干扰的主要驱动因素。极端事件之所以特别引起人们的关注,不仅是因为它们带来的科学挑战,而且还因为它们可能造成的社会后果。在这里,我们介绍了2000年7月14日“巴士底日”爆发的磁流体动力学(MHD)模拟,该模拟产生了非常强烈的地磁风暴。在建立了电晕和太阳风的“热力学” MHD模型后,我们沿着喷发源区域的极性反转线插入了磁稳定的磁通绳,并通过边界流引发了喷发。几分钟内,在喷发过程中释放出超过10 33 的磁能,从而产生了耀斑,EUV波和日冕质量抛射(CME),其在外日冕中传播的时间约为1500 km s -1 ,接近观察到的速度。然后,我们使用日球MHD代码将CME传播到地球。因此,我们的模拟提供了一个机会,可以测试如果爆发是从稳定的磁平衡状态开始的,则对极端事件的原位观测的匹配程度如何。我们发现,磁通量中心的性质与所观察到的磁云非常相似,但是到达磁滞中心的时间约为8.5小时,距北方偏远15°,磁场强度太弱了1.6倍。助焊剂绳的前部高度变形,通过1 AU时会显示局部磁场集中。关于基于太阳爆发的MHD模拟的空间天气预测的发展,我们讨论了这些属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号