首页> 美国卫生研究院文献>other >Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence
【2h】

Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence

机译:促进振动和酶的功能。新兴的理论与实验融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A complete understanding of enzyme catalysis requires knowledge of both transition state features and the detailed motions of atoms that cause reactant molecules to form and traverse the transition state. The seeming intractability of the problem arises from the femtosecond lifetime of chemical transition states, preventing most experimental access. Computational chemistry is admirably suited to short time scale analysis but can be misled by inappropriate starting points or by biased assumptions. Kinetic isotope effects provide an experimental approach to transition state structure and a method for obtaining transition state analogues but, alone, do not inform how that transition state is reached. Enzyme structures with transition state analogues provide computational starting points near the transition state geometry. These well-conditioned starting points, combined with the unbiased computational method of transition path sampling, provide realistic atomistic motions involved in transition state formation and passage. In many, but not all, enzymatic systems, femtosecond local protein motions near the catalytic site are linked to transition state formation. These motions are not inherently revealed by most approaches of transition state theory, because transition state theory replaces dynamics with the statistics of the transition state. Experimental and theoretical convergence of the link between local catalytic site vibrational modes and catalysis comes from heavy atom (“Born–Oppenheimer”) enzymes. Fully labeled and catalytic site local heavy atom labels perturb the probability of finding enzymatic transition states in ways that can be analyzed and predicted by transition path sampling. Recent applications of these experimental and computational approaches reveal how subpicosecond local catalytic site protein modes play important roles in creating the transition state.
机译:对酶催化的完整理解需要既了解过渡态特征又了解导致反应物分子形成并穿越过渡态的原子的详细运动。该问题似乎难以解决,是由于飞跃寿命的化学跃迁状态引起的,从而阻碍了大多数实验的进行。计算化学非常适合短时间规模的分析,但可能因不适当的起点或偏颇的假设而被误导。动力学同位素效应提供了一种过渡态结构的实验方法和一种获得过渡态类似物的方法,但仅靠这种方法并不能说明如何达到该过渡态。具有过渡状态类似物的酶结构提供了过渡状态几何形状附近的计算起点。这些条件良好的起点与过渡路径采样的无偏计算方法相结合,提供了涉及过渡状态形成和通过的逼真的原子运动。在许多但不是全部的酶系统中,飞秒在催化位点附近发生的局部蛋白质运动与过渡态的形成有关。这些运动并不是大多数过渡状态理论的方法固有地揭示出来的,因为过渡状态理论将动力学替换为过渡状态的统计数据。局部催化位点振动模式与催化之间联系的实验和理论收敛来自重原子(“ Born–Oppenheimer”)酶。完全标记和催化位点的局部重原子标记以可以通过过渡路径采样分析和预测的方式扰乱了发现酶促过渡态的可能性。这些实验和计算方法的最新应用揭示了亚皮秒局部催化位点蛋白质模式如何在建立过渡态中发挥重要作用。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(57),24
  • 年度 -1
  • 页码 3299–3308
  • 总页数 22
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号