首页> 美国卫生研究院文献>other >Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes
【2h】

Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes

机译:氢在二硫化钨多层膜和多壁纳米管上的吸附和嵌入模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS2 multilayers and nanotubes. We find that H2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H2 on the surface of WS2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H2 between adjacent planar WS2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H2 monolayer adsorbed on top of the first WS2 layer of a WS2 multilayer system strongly facilitates the intercalation of H2 between WS2 layers underneath. This opens up an additional gate to intercalation processes.
机译:在传感器,催化,燃料电池和氢存储等领域,了解氢与分层材料的相互作用至关重要。通过引入范德华分散力进行改进的密度泛函理论为研究分子氢和原子氢与WS2多层膜和纳米管的相互作用提供了一个有效而实用的工作台。我们发现,H 2物理吸附在W原子顶部的那些材料的表面上,而原子H化学吸附在S原子顶部。在纳米管的情况下,化学吸附强度对纳米管直径敏感。 H2在WS2表面上的扩散遇到很小的激活障碍,其激活强度有助于解释观察到的氢浓度与温度的相关性的先前和新的实验结果。在相邻的平面WS2层之间插入H2揭示了吸热特征。插层的H原子在能量上是有利的,但是插层的能量不能补偿分子解离的成本。当H2分子插入双壁纳米管的壁之间时,刚性限制会导致被限制分子解离。一个了不起的结果是,吸附在WS2多层系统的第一个WS2层顶部的完整H2单层的存在极大地促进了H2在下面的WS2层之间的嵌入。这为插入过程打开了另一个大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号