首页> 美国卫生研究院文献>other >A Computational Framework for the Detection of Subcortical Brain Dysmaturation in Neonatal MRI Using 3D Convolutional Neural Networks
【2h】

A Computational Framework for the Detection of Subcortical Brain Dysmaturation in Neonatal MRI Using 3D Convolutional Neural Networks

机译:使用3D卷积神经网络在新生儿MRI中检测皮层下脑发育不全的计算框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance. Volumetric information alone is insufficient for diagnosis. In this study, we developed a computational framework for the automated classification of brain dysmaturation from neonatal MRI, by combining a specific deep neural network implementation with neonatal structural brain segmentation as a method for both clinical pattern recognition and data-driven inference into the underlying structural morphology. We implemented three-dimensional convolution neural networks (3D-CNNs) to specifically classify dysplastic cerebelli, a subset of surface-based subcortical brain dysmaturation, in term infants born with congenital heart disease. We obtained a 0.985 +/− 0. 0241-classification accuracy of subtle cerebellar dysplasia in CHD using 10-fold cross-validation. Furthermore, the hidden layer activations and class activation maps depicted regional vulnerability of the superior surface of the cerebellum, (composed of mostly the posterior lobe and the midline vermis), in regards to differentiating the dysplastic process from normal tissue. The posterior lobe and the midline vermis provide regional differentiation that is relevant to not only to the clinical diagnosis of cerebellar dysplasia, but also genetic mechanisms and neurodevelopmental outcome correlates. These findings not only contribute to the detection and classification of a subset of neonatal brain dysmaturation, but also provide insight to the pathogenesis of cerebellar dysplasia in CHD. In addition, this is one of the first examples of the application of deep learning to a neuroimaging dataset, in which the hidden layer activation revealed diagnostically and biologically relevant features about the clinical pathogenesis. The code developed for this project is open source, published under the BSD License, and designed to be generalizable to applications both within and beyond neonatal brain imaging.
机译:深度神经网络越来越多地用于分类任务的监督学习和无监督学习中,以从输入数据中得出复杂的模式。但是,使用神经影像数据集成功实施深层神经网络需要足够的样本量用于训练和基于结构定义的明确定义的信号强度。尽管有翻译研究和临床重要性,但仍缺乏有效的自动化诊断工具来可靠地检测新生儿期的脑发育不全,这与样本量小和复杂的未分化脑结构有关。单凭体积信息不足以进行诊断。在这项研究中,我们通过将特定的深层神经网络实现与新生儿结构性脑部分割相结合,将其作为临床模式识别和数据驱动推断基础结构的一种方法,为新生儿MRI的脑功能不全进行自动分类开发了一个计算框架形态学。我们实施了三维卷积神经网络(3D-CNN),以对先天性心脏病足月儿中的发育不良小脑(基于表面皮层下大脑皮层不全的一个子集)进行具体分类。使用10倍交叉验证,我们在CHD中获得了微妙的小脑发育不良的0.985 +/- 0。此外,隐藏层激活和类别激活图描述了小脑上表面的区域易损性(主要由后叶和中线ver部组成),以区分增生过程与正常组织。后叶和中线ver提供区域分化,不仅与小脑发育不良的临床诊断有关,而且与遗传机制和神经发育结局相关。这些发现不仅有助于新生儿脑发育不全的一部分的检测和分类,而且还为冠心病小脑发育不良的发病机理提供了见识。此外,这是将深度学习应用于神经影像数据集的第一个示例,其中隐藏层的激活揭示了与临床发病机制有关的诊断和生物学相关特征。为该项目开发的代码是开源的,在BSD许可下发布,旨在通用化至新生儿脑成像内外的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号