首页> 美国卫生研究院文献>other >Structural Contributions to Hydrodynamic Diameter for Quantum Dots Optimized for Live-Cell Single-Molecule Tracking
【2h】

Structural Contributions to Hydrodynamic Diameter for Quantum Dots Optimized for Live-Cell Single-Molecule Tracking

机译:为活细胞单分子跟踪优化的量子点的流体力学直径的结构贡献。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum dots are fluorescent nanoparticles with narrow-band, size-tunable, and long-lasting emission. Typical formulations used for imaging proteins in cells are hydrodynamically much larger than the protein targets, so it is critical to assess the impact of steric effects deriving from hydrodynamic size. This report analyzes a new class of quantum dots that have been engineered for minimized size specifically for imaging receptors in narrow synaptic junctions between neurons. We use fluorescence correlation spectroscopy and transmission electron microscopy to calculate the contributions of the crystalline core, organic coating, and targeting proteins (streptavidin) to the total hydrodynamic diameter of the probe, using a wide range of core materials with emission spanning 545–705 nm. We find the contributing thickness of standard commercial amphiphilic polymers to be ~8 to ~14 nm, whereas coatings based on the compact ligand HS-(CH2)11 (OCH2CH2)4-OH contribute ~6 to ~9 nm, reducing the diameter by ~2 to ~5 nm, depending on core size. When the number of streptavidins for protein targeting is minimized, the total diameter can be further reduced by ~5 to ~11 nm, yielding a diameter of 13.8–18.4 nm. These findings explain why access to the narrow synapse derive primarily from the protein functionalization of commercial variants, rather than the organic coating layers. They also explain why those quantum dots with size around 14 nm with only a few streptavidins can access narrow cellular structures for neuronal labeling, whereas those >27 nm and a large number of streptavidins, cannot.
机译:量子点是具有窄带,尺寸可调且发射时间长的荧光纳米粒子。用于细胞蛋白质成像的典型配方在流体力学上比蛋白质靶点要大得多,因此评估由流体动力学大小引起的空间效应的影响至关重要。该报告分析了一类新的量子点,这些量子点经过专门设计以最小化大小,专门用于成像神经元之间狭窄突触连接处的受体。我们使用荧光相关光谱法和透射电子显微镜来计算晶体核,有机涂层和靶向蛋白(链霉亲和素)对探针总流体动力学直径的贡献,使用了范围广泛的发射范围为545-705 nm的核心材料。我们发现标准商用两亲聚合物的贡献厚度为〜8至〜14 nm,而基于紧密配体HS-(CH2)11 -(OCH2CH2)4-OH的涂料贡献了〜6 〜9 nm,取决于纤芯尺寸,将直径减小〜2至〜5 nm。当用于蛋白质靶向的链霉亲和素的数量最小化时,总直径可进一步减少约5至〜11 nm,从而产生13.8–18.4 nm的直径。这些发现解释了为什么进入窄突触的原因主要来源于商业变异的蛋白质功能化,而不是有机涂层。他们还解释了为什么只有几个链霉亲和素的那些大小在14 nm左右的量子点可以进入狭窄的细胞结构进行神经元标记,而那些> 27 nm的量子点和大量链霉亲和素却不能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号