首页> 美国卫生研究院文献>ACS Omega >Electrosprayed Polymer-Hybridized Multidoped ZnO MesoscopicNanocrystals Yield Highly Efficient and Stable Perovskite Solar Cells
【2h】

Electrosprayed Polymer-Hybridized Multidoped ZnO MesoscopicNanocrystals Yield Highly Efficient and Stable Perovskite Solar Cells

机译:电喷雾聚合物杂化多掺杂ZnO介观纳米晶体可产生高效稳定的钙钛矿太阳能电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solid-state perovskite solar cells have been expeditiously developed since the past few years. However, there are a number of open questions and issues related to the perovskite devices, such as their long-term ambient stability and hysteresis in current density–voltage curves. We developed highly efficient and hysteresis-less perovskite devices by changing the frequently used TiO2 mesoscopic layer with polymer-hybridized multidoped ZnO nanocrystals in a common n–i–p structure for the first time. The gradual adjustment of ZnO conduction band position using single- and multidopant atoms will likely enhance the power conversion efficiency (PCE) from 8.26 to 13.54%, with PCEmax = 15.09%. The highest PCEavg of 13.54% was demonstrated by 2 atom % boron and 6 atom % fluorine co-doped (B, F:ZnO) nanolayers (using optimized film thickness of 160 nm) owing to their highest conductivity, carrier concentration, optical transmittance, and band-gap energy compared to other doped films. We also successfully apply a fine polyethylenimine thin layer on the doped ZnO nanolayers, causing the reduction in work functionand overall demonstrating the enhancement in PCE from ∼10.86%up to 16.20%. A polymer-mixed electron-transporting layer demonstratesthe remarkable PCEmax of 20.74% by decreasing the trapsites in the oxide layer that probably reduces the chances of carrierinterfacial recombination originated from traps and thus improvesthe device performance. Particularly, we produce these electron-richmultidoped ZnO nanolayers via electrospray technique, which is highlysuitable for the future development of perovskite solar cells.
机译:从过去的几年以来,固态钙钛矿太阳能电池得到了迅速的发展。但是,存在与钙钛矿设备相关的许多悬而未决的问题,例如它们的长期环境稳定性以及电流密度-电压曲线中的滞后现象。我们通过首次将常见的TiO2介观层与聚合物杂化的多掺杂ZnO纳米晶体以共同的n-i-p结构改变,开发出了高效且无磁滞的钙钛矿器件。使用单和多掺杂原子逐步调整ZnO导带位置可能会将功率转换效率(PCE)从8.26%提高到13.54%,其中PCEmax = 15.09%。最高的PCEavg为13.54%,这是由于2个原子%的硼和6个原子%的氟共掺杂(B,F:ZnO)纳米层(使用160 nm的优化膜厚度)所致,因为它们具有最高的电导率,载流子浓度,透光率,以及与其他掺杂薄膜相比的带隙能量。我们还成功地在掺杂的ZnO纳米层上应用了精细的聚乙烯亚胺薄层,从而导致功函数降低总体上证明PCE增强了〜10.86%高达16.20%。聚合物混合的电子传输层表明通过减少陷阱,可实现20.74%的出色PCEmax氧化物层中的位置可能会减少载流子的机会界面重组源自陷阱,因此改善了设备性能。特别是,我们生产这些富电子的通过电喷雾技术制备多掺杂的ZnO纳米层适用于钙钛矿太阳能电池的未来发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号