首页> 美国卫生研究院文献>other >Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven 19F-19F Dipolar Recoupling NMR
【2h】

Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven 19F-19F Dipolar Recoupling NMR

机译:快速幻角旋转射频驱动的19F-19F双极耦合NMR测定长距离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanometer-range distances are important for restraining the three-dimensional structure and oligomeric assembly of proteins and other biological molecules. Solid-state NMR determination of protein structures typically utilizes 13C–13C and 13C–15N distance restraints, which can only be measured up to ~7 Å due to the low gyromagnetic ratios of these nuclear spins. To extend the distance reach of NMR, one can harvest the power of 19F, whose large gyromagnetic ratio in principle allows distances up to 2 nm to be measured. However, 19F possesses large chemical shift anisotropies (CSAs) as well as large isotropic chemical shift dispersions, which pose challenges to dipolar coupling measurements. Here we demonstrate 19F–19F distance measurements at high magnetic fields under fast magic-angle spinning (MAS) using radiofrequency-driven dipolar recoupling (RFDR). We show that 19F–19F cross peaks for distances up to 1 nm can be readily observed in 2D 19F–19F correlation spectra using less than 5 ms of RFDR mixing. This efficient 19F–19F dipolar recoupling is achieved using practically accessible MAS frequencies of 15–55 kHz, moderate 19F rf field strengths, and no 1H decoupling. Experiments and simulations show that the fastest polarization transfer for aromatic fluorines with the highest distance accuracy is achieved using either fast MAS (e.g. 60 kHz) with large pulse duty cycles (> 50%) or slow MAS with strong 19F pulses. Fast MAS considerably reduces relaxation losses during the RFDR π-pulse train, making finite-pulse RFDR under fast-MAS the method of choice. Under intermediate MAS frequencies (25–40 kHz) and intermediate pulse duty cycles (15–30%), the 19F CSA tensor orientation has a quantifiable effect on the polarization transfer rate, thus the RFDR buildup curves encode both distance and orientation information. At fast MAS, the impact of CSA orientation is minimized, allowing pure distance restraints to be extracted. We further investigate how relayed transfer and dipolar truncation in multi-fluorine environments affect polarization transfer. This fast-MAS 19F RFDR approach is complementary to 19F spin diffusion for distance measurements, and will be the method of choice under high-field fast-MAS conditions that are increasingly important for protein structure determination by solid-state NMR.
机译:纳米距离对于限制蛋白质和其他生物分子的三维结构和寡聚组装非常重要。固态NMR测定蛋白质结构通常利用 13 C– 13 C和 13 C– 15 N距离约束,由于这些核自旋的低旋磁比,只能测量到约7Å。为了扩大NMR的距离范围,可以获取 19 F的功率,该功率的大回旋磁比原则上可以测量到2 nm的距离。然而, 19 F具有较大的化学位移各向异性(CSA)和较大的各向同性化学位移色散,这对偶极耦合测量提出了挑战。在这里,我们演示了使用射频驱动的偶极耦合(RFDR)在快速魔角旋转(MAS)下在高磁场下测量 19 F– 19 F的距离。我们表明,在2D 19 F– 19中可以很容易地观察到 19 F– 19 F交叉峰,最远距离为1 nm。 F相关光谱,使用不到5毫秒的RFDR混合。这种有效的 19 F– 19 F双极耦合是通过使用15-55 kHz的实际MAS频率,适度的 19 F rf场强来实现的,并且没有 1 H解耦。实验和模拟表明,使用具有大脉冲占空比(> 50%)的快速MAS(例如60 kHz)或具有 19 F脉冲。快速MAS大大降低了RFDRπ脉冲序列期间的弛豫损耗,这使得快速MAS下的有限脉冲RFDR成为首选方法。在中等MAS频率(25–40 kHz)和中等脉冲占空比(15–30%)下, 19 CSA张量取向对极化传输速率具有可量化的影响,因此RFDR累积曲线编码距离和方向信息。在快速MAS中,CSA方向的影响最小化,从而可以提取纯的距离约束。我们进一步研究了多氟环境中的中继转移和偶极截短如何影响极化转移。这种快速MAS 19 F RFDR方法是 19 F自旋扩散用于距离测量的补充,它将是在高场快速MAS条件下的选择方法对于通过固态NMR确定蛋白质结构越来越重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号